Copied to
clipboard

?

G = D2024D4order 320 = 26·5

2nd semidirect product of D20 and D4 acting through Inn(D20)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2024D4, C42.109D10, C10.592- (1+4), (C4×D4)⋊13D5, (D4×C20)⋊15C2, (C4×D20)⋊29C2, C202(C4○D4), C43(C4○D20), C202D48C2, C52(D46D4), C4.140(D4×D5), C4⋊C4.316D10, C202Q824C2, D10.38(C2×D4), C20.346(C2×D4), (C2×D4).214D10, (C2×C10).95C24, C10.50(C22×D4), D10.12D46C2, C20.48D420C2, (C4×C20).152C22, (C2×C20).783C23, C22⋊C4.110D10, (C22×C4).208D10, C23.95(C22×D5), (C2×D20).295C22, (D4×C10).257C22, C4⋊Dic5.199C22, (C2×Dic5).41C23, C22.120(C23×D5), C23.D5.12C22, D10⋊C4.98C22, (C22×C20).107C22, (C22×C10).165C23, C10.D4.65C22, (C22×D5).183C23, C2.16(D4.10D10), (C2×Dic10).247C22, C2.23(C2×D4×D5), (D5×C4⋊C4)⋊15C2, (C2×C4○D20)⋊8C2, C2.46(C2×C4○D20), C10.42(C2×C4○D4), (C2×C4×D5).73C22, (C5×C4⋊C4).326C22, (C2×C4).579(C22×D5), (C2×C5⋊D4).121C22, (C5×C22⋊C4).122C22, SmallGroup(320,1223)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2024D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2024D4
C5C2×C10 — D2024D4

Subgroups: 1030 in 292 conjugacy classes, 107 normal (29 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×14], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×22], D4 [×14], Q8 [×4], C23 [×2], C23 [×2], D5 [×4], C10 [×3], C10 [×2], C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×9], C22×C4 [×2], C22×C4 [×6], C2×D4, C2×D4 [×5], C2×Q8 [×2], C4○D4 [×8], Dic5 [×6], C20 [×4], C20 [×3], D10 [×4], D10 [×4], C2×C10, C2×C10 [×6], C2×C4⋊C4 [×2], C4×D4, C4×D4, C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×12], D20 [×4], C2×Dic5 [×6], C5⋊D4 [×8], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×2], C22×D5 [×2], C22×C10 [×2], D46D4, C10.D4 [×4], C4⋊Dic5, C4⋊Dic5 [×4], D10⋊C4 [×2], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×6], C2×D20, C4○D20 [×8], C2×C5⋊D4 [×4], C22×C20 [×2], D4×C10, C202Q8, C4×D20, D10.12D4 [×4], D5×C4⋊C4 [×2], C20.48D4 [×2], C202D4 [×2], D4×C20, C2×C4○D20 [×2], D2024D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], D46D4, C4○D20 [×2], D4×D5 [×2], C23×D5, C2×C4○D20, C2×D4×D5, D4.10D10, D2024D4

Generators and relations
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 49)(42 48)(43 47)(44 46)(50 60)(51 59)(52 58)(53 57)(54 56)(61 67)(62 66)(63 65)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(81 85)(82 84)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)(121 127)(122 126)(123 125)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(141 147)(142 146)(143 145)(148 160)(149 159)(150 158)(151 157)(152 156)(153 155)
(1 113 48 77)(2 114 49 78)(3 115 50 79)(4 116 51 80)(5 117 52 61)(6 118 53 62)(7 119 54 63)(8 120 55 64)(9 101 56 65)(10 102 57 66)(11 103 58 67)(12 104 59 68)(13 105 60 69)(14 106 41 70)(15 107 42 71)(16 108 43 72)(17 109 44 73)(18 110 45 74)(19 111 46 75)(20 112 47 76)(21 125 155 94)(22 126 156 95)(23 127 157 96)(24 128 158 97)(25 129 159 98)(26 130 160 99)(27 131 141 100)(28 132 142 81)(29 133 143 82)(30 134 144 83)(31 135 145 84)(32 136 146 85)(33 137 147 86)(34 138 148 87)(35 139 149 88)(36 140 150 89)(37 121 151 90)(38 122 152 91)(39 123 153 92)(40 124 154 93)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 38)(12 39)(13 40)(14 21)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(41 155)(42 156)(43 157)(44 158)(45 159)(46 160)(47 141)(48 142)(49 143)(50 144)(51 145)(52 146)(53 147)(54 148)(55 149)(56 150)(57 151)(58 152)(59 153)(60 154)(61 136)(62 137)(63 138)(64 139)(65 140)(66 121)(67 122)(68 123)(69 124)(70 125)(71 126)(72 127)(73 128)(74 129)(75 130)(76 131)(77 132)(78 133)(79 134)(80 135)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 101)(90 102)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 111)(100 112)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,49)(42,48)(43,47)(44,46)(50,60)(51,59)(52,58)(53,57)(54,56)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,147)(142,146)(143,145)(148,160)(149,159)(150,158)(151,157)(152,156)(153,155), (1,113,48,77)(2,114,49,78)(3,115,50,79)(4,116,51,80)(5,117,52,61)(6,118,53,62)(7,119,54,63)(8,120,55,64)(9,101,56,65)(10,102,57,66)(11,103,58,67)(12,104,59,68)(13,105,60,69)(14,106,41,70)(15,107,42,71)(16,108,43,72)(17,109,44,73)(18,110,45,74)(19,111,46,75)(20,112,47,76)(21,125,155,94)(22,126,156,95)(23,127,157,96)(24,128,158,97)(25,129,159,98)(26,130,160,99)(27,131,141,100)(28,132,142,81)(29,133,143,82)(30,134,144,83)(31,135,145,84)(32,136,146,85)(33,137,147,86)(34,138,148,87)(35,139,149,88)(36,140,150,89)(37,121,151,90)(38,122,152,91)(39,123,153,92)(40,124,154,93), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,21)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,136)(62,137)(63,138)(64,139)(65,140)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,49)(42,48)(43,47)(44,46)(50,60)(51,59)(52,58)(53,57)(54,56)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,85)(82,84)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,147)(142,146)(143,145)(148,160)(149,159)(150,158)(151,157)(152,156)(153,155), (1,113,48,77)(2,114,49,78)(3,115,50,79)(4,116,51,80)(5,117,52,61)(6,118,53,62)(7,119,54,63)(8,120,55,64)(9,101,56,65)(10,102,57,66)(11,103,58,67)(12,104,59,68)(13,105,60,69)(14,106,41,70)(15,107,42,71)(16,108,43,72)(17,109,44,73)(18,110,45,74)(19,111,46,75)(20,112,47,76)(21,125,155,94)(22,126,156,95)(23,127,157,96)(24,128,158,97)(25,129,159,98)(26,130,160,99)(27,131,141,100)(28,132,142,81)(29,133,143,82)(30,134,144,83)(31,135,145,84)(32,136,146,85)(33,137,147,86)(34,138,148,87)(35,139,149,88)(36,140,150,89)(37,121,151,90)(38,122,152,91)(39,123,153,92)(40,124,154,93), (1,28)(2,29)(3,30)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,38)(12,39)(13,40)(14,21)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(41,155)(42,156)(43,157)(44,158)(45,159)(46,160)(47,141)(48,142)(49,143)(50,144)(51,145)(52,146)(53,147)(54,148)(55,149)(56,150)(57,151)(58,152)(59,153)(60,154)(61,136)(62,137)(63,138)(64,139)(65,140)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,49),(42,48),(43,47),(44,46),(50,60),(51,59),(52,58),(53,57),(54,56),(61,67),(62,66),(63,65),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(81,85),(82,84),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111),(121,127),(122,126),(123,125),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(141,147),(142,146),(143,145),(148,160),(149,159),(150,158),(151,157),(152,156),(153,155)], [(1,113,48,77),(2,114,49,78),(3,115,50,79),(4,116,51,80),(5,117,52,61),(6,118,53,62),(7,119,54,63),(8,120,55,64),(9,101,56,65),(10,102,57,66),(11,103,58,67),(12,104,59,68),(13,105,60,69),(14,106,41,70),(15,107,42,71),(16,108,43,72),(17,109,44,73),(18,110,45,74),(19,111,46,75),(20,112,47,76),(21,125,155,94),(22,126,156,95),(23,127,157,96),(24,128,158,97),(25,129,159,98),(26,130,160,99),(27,131,141,100),(28,132,142,81),(29,133,143,82),(30,134,144,83),(31,135,145,84),(32,136,146,85),(33,137,147,86),(34,138,148,87),(35,139,149,88),(36,140,150,89),(37,121,151,90),(38,122,152,91),(39,123,153,92),(40,124,154,93)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,38),(12,39),(13,40),(14,21),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(41,155),(42,156),(43,157),(44,158),(45,159),(46,160),(47,141),(48,142),(49,143),(50,144),(51,145),(52,146),(53,147),(54,148),(55,149),(56,150),(57,151),(58,152),(59,153),(60,154),(61,136),(62,137),(63,138),(64,139),(65,140),(66,121),(67,122),(68,123),(69,124),(70,125),(71,126),(72,127),(73,128),(74,129),(75,130),(76,131),(77,132),(78,133),(79,134),(80,135),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,101),(90,102),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,111),(100,112)])

Matrix representation G ⊆ GL6(𝔽41)

3200000
3790000
00344000
008100
000010
000001
,
40250000
010000
00404000
000100
000010
000001
,
100000
010000
0040000
0004000
0000040
000010
,
100000
5400000
0040000
0004000
000010
0000040

G:=sub<GL(6,GF(41))| [32,37,0,0,0,0,0,9,0,0,0,0,0,0,34,8,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,25,1,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[1,5,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J···4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224···444···45510···1010···1020···2020···20
size111144101010102···2420···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10C4○D202- (1+4)D4×D5D4.10D10
kernelD2024D4C202Q8C4×D20D10.12D4D5×C4⋊C4C20.48D4C202D4D4×C20C2×C4○D20D20C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C4C2
# reps1114222124242424216144

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{24}D_4
% in TeX

G:=Group("D20:24D4");
// GroupNames label

G:=SmallGroup(320,1223);
// by ID

G=gap.SmallGroup(320,1223);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽