Copied to
clipboard

?

G = Dic1023D4order 320 = 26·5

1st semidirect product of Dic10 and D4 acting through Inn(Dic10)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1023D4, C42.110D10, C10.602- (1+4), (C4×D4)⋊14D5, (D4×C20)⋊16C2, C207D48C2, C51(Q85D4), C4.141(D4×D5), C4⋊C4.283D10, D10⋊Q87C2, C20.347(C2×D4), (C4×Dic10)⋊31C2, (C2×D4).215D10, C4.D2017C2, C221(C4○D20), (C2×C10).96C24, Dic5.41(C2×D4), C10.51(C22×D4), Dic54D447C2, Dic5⋊D426C2, C20.48D421C2, (C4×C20).153C22, (C2×C20).784C23, C22⋊C4.111D10, Dic5.5D46C2, (C22×Dic10)⋊9C2, (C22×C4).209D10, C23.96(C22×D5), (D4×C10).306C22, (C2×D20).219C22, C4⋊Dic5.298C22, (C22×D5).31C23, C22.121(C23×D5), C23.D5.13C22, D10⋊C4.66C22, (C22×C20).108C22, (C22×C10).166C23, (C2×Dic5).214C23, (C4×Dic5).224C22, C2.17(D4.10D10), (C2×Dic10).248C22, C10.D4.154C22, (C22×Dic5).96C22, C2.24(C2×D4×D5), (C2×C4○D20)⋊9C2, (C2×C10)⋊3(C4○D4), C10.43(C2×C4○D4), C2.47(C2×C4○D20), (C2×C4×D5).250C22, (C5×C4⋊C4).327C22, (C2×C4).159(C22×D5), (C2×C5⋊D4).122C22, (C5×C22⋊C4).123C22, SmallGroup(320,1224)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1023D4
C1C5C10C2×C10C22×D5C2×C5⋊D4Dic54D4 — Dic1023D4
C5C2×C10 — Dic1023D4

Subgroups: 1030 in 290 conjugacy classes, 107 normal (51 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×11], C5, C2×C4 [×5], C2×C4 [×18], D4 [×12], Q8 [×10], C23 [×2], C23 [×2], D5 [×2], C10 [×3], C10 [×3], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×5], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×D4 [×5], C2×Q8 [×8], C4○D4 [×4], Dic5 [×4], Dic5 [×4], C20 [×2], C20 [×4], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×5], C4×D4, C4×D4 [×2], C4×Q8, C4⋊D4 [×3], C22⋊Q8 [×3], C4.4D4 [×3], C22×Q8, C2×C4○D4, Dic10 [×4], Dic10 [×6], C4×D5 [×4], D20 [×2], C2×Dic5 [×6], C2×Dic5 [×4], C5⋊D4 [×8], C2×C20 [×5], C2×C20 [×4], C5×D4 [×2], C22×D5 [×2], C22×C10 [×2], Q85D4, C4×Dic5 [×2], C10.D4 [×4], C4⋊Dic5, D10⋊C4 [×6], C23.D5 [×2], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×Dic10 [×2], C2×Dic10 [×4], C2×C4×D5 [×2], C2×D20, C4○D20 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×4], C22×C20 [×2], D4×C10, C4×Dic10, C4.D20, Dic54D4 [×2], Dic5.5D4 [×2], D10⋊Q8 [×2], C20.48D4, C207D4, Dic5⋊D4 [×2], D4×C20, C22×Dic10, C2×C4○D20, Dic1023D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], Q85D4, C4○D20 [×2], D4×D5 [×2], C23×D5, C2×C4○D20, C2×D4×D5, D4.10D10, Dic1023D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, ad=da, cbc-1=a10b, bd=db, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 159 11 149)(2 158 12 148)(3 157 13 147)(4 156 14 146)(5 155 15 145)(6 154 16 144)(7 153 17 143)(8 152 18 142)(9 151 19 141)(10 150 20 160)(21 47 31 57)(22 46 32 56)(23 45 33 55)(24 44 34 54)(25 43 35 53)(26 42 36 52)(27 41 37 51)(28 60 38 50)(29 59 39 49)(30 58 40 48)(61 112 71 102)(62 111 72 101)(63 110 73 120)(64 109 74 119)(65 108 75 118)(66 107 76 117)(67 106 77 116)(68 105 78 115)(69 104 79 114)(70 103 80 113)(81 122 91 132)(82 121 92 131)(83 140 93 130)(84 139 94 129)(85 138 95 128)(86 137 96 127)(87 136 97 126)(88 135 98 125)(89 134 99 124)(90 133 100 123)
(1 117 33 121)(2 118 34 122)(3 119 35 123)(4 120 36 124)(5 101 37 125)(6 102 38 126)(7 103 39 127)(8 104 40 128)(9 105 21 129)(10 106 22 130)(11 107 23 131)(12 108 24 132)(13 109 25 133)(14 110 26 134)(15 111 27 135)(16 112 28 136)(17 113 29 137)(18 114 30 138)(19 115 31 139)(20 116 32 140)(41 88 145 62)(42 89 146 63)(43 90 147 64)(44 91 148 65)(45 92 149 66)(46 93 150 67)(47 94 151 68)(48 95 152 69)(49 96 153 70)(50 97 154 71)(51 98 155 72)(52 99 156 73)(53 100 157 74)(54 81 158 75)(55 82 159 76)(56 83 160 77)(57 84 141 78)(58 85 142 79)(59 86 143 80)(60 87 144 61)
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 81)(21 64)(22 65)(23 66)(24 67)(25 68)(26 69)(27 70)(28 71)(29 72)(30 73)(31 74)(32 75)(33 76)(34 77)(35 78)(36 79)(37 80)(38 61)(39 62)(40 63)(41 103)(42 104)(43 105)(44 106)(45 107)(46 108)(47 109)(48 110)(49 111)(50 112)(51 113)(52 114)(53 115)(54 116)(55 117)(56 118)(57 119)(58 120)(59 101)(60 102)(121 159)(122 160)(123 141)(124 142)(125 143)(126 144)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,159,11,149)(2,158,12,148)(3,157,13,147)(4,156,14,146)(5,155,15,145)(6,154,16,144)(7,153,17,143)(8,152,18,142)(9,151,19,141)(10,150,20,160)(21,47,31,57)(22,46,32,56)(23,45,33,55)(24,44,34,54)(25,43,35,53)(26,42,36,52)(27,41,37,51)(28,60,38,50)(29,59,39,49)(30,58,40,48)(61,112,71,102)(62,111,72,101)(63,110,73,120)(64,109,74,119)(65,108,75,118)(66,107,76,117)(67,106,77,116)(68,105,78,115)(69,104,79,114)(70,103,80,113)(81,122,91,132)(82,121,92,131)(83,140,93,130)(84,139,94,129)(85,138,95,128)(86,137,96,127)(87,136,97,126)(88,135,98,125)(89,134,99,124)(90,133,100,123), (1,117,33,121)(2,118,34,122)(3,119,35,123)(4,120,36,124)(5,101,37,125)(6,102,38,126)(7,103,39,127)(8,104,40,128)(9,105,21,129)(10,106,22,130)(11,107,23,131)(12,108,24,132)(13,109,25,133)(14,110,26,134)(15,111,27,135)(16,112,28,136)(17,113,29,137)(18,114,30,138)(19,115,31,139)(20,116,32,140)(41,88,145,62)(42,89,146,63)(43,90,147,64)(44,91,148,65)(45,92,149,66)(46,93,150,67)(47,94,151,68)(48,95,152,69)(49,96,153,70)(50,97,154,71)(51,98,155,72)(52,99,156,73)(53,100,157,74)(54,81,158,75)(55,82,159,76)(56,83,160,77)(57,84,141,78)(58,85,142,79)(59,86,143,80)(60,87,144,61), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,81)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,61)(39,62)(40,63)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,159,11,149)(2,158,12,148)(3,157,13,147)(4,156,14,146)(5,155,15,145)(6,154,16,144)(7,153,17,143)(8,152,18,142)(9,151,19,141)(10,150,20,160)(21,47,31,57)(22,46,32,56)(23,45,33,55)(24,44,34,54)(25,43,35,53)(26,42,36,52)(27,41,37,51)(28,60,38,50)(29,59,39,49)(30,58,40,48)(61,112,71,102)(62,111,72,101)(63,110,73,120)(64,109,74,119)(65,108,75,118)(66,107,76,117)(67,106,77,116)(68,105,78,115)(69,104,79,114)(70,103,80,113)(81,122,91,132)(82,121,92,131)(83,140,93,130)(84,139,94,129)(85,138,95,128)(86,137,96,127)(87,136,97,126)(88,135,98,125)(89,134,99,124)(90,133,100,123), (1,117,33,121)(2,118,34,122)(3,119,35,123)(4,120,36,124)(5,101,37,125)(6,102,38,126)(7,103,39,127)(8,104,40,128)(9,105,21,129)(10,106,22,130)(11,107,23,131)(12,108,24,132)(13,109,25,133)(14,110,26,134)(15,111,27,135)(16,112,28,136)(17,113,29,137)(18,114,30,138)(19,115,31,139)(20,116,32,140)(41,88,145,62)(42,89,146,63)(43,90,147,64)(44,91,148,65)(45,92,149,66)(46,93,150,67)(47,94,151,68)(48,95,152,69)(49,96,153,70)(50,97,154,71)(51,98,155,72)(52,99,156,73)(53,100,157,74)(54,81,158,75)(55,82,159,76)(56,83,160,77)(57,84,141,78)(58,85,142,79)(59,86,143,80)(60,87,144,61), (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,81)(21,64)(22,65)(23,66)(24,67)(25,68)(26,69)(27,70)(28,71)(29,72)(30,73)(31,74)(32,75)(33,76)(34,77)(35,78)(36,79)(37,80)(38,61)(39,62)(40,63)(41,103)(42,104)(43,105)(44,106)(45,107)(46,108)(47,109)(48,110)(49,111)(50,112)(51,113)(52,114)(53,115)(54,116)(55,117)(56,118)(57,119)(58,120)(59,101)(60,102)(121,159)(122,160)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,159,11,149),(2,158,12,148),(3,157,13,147),(4,156,14,146),(5,155,15,145),(6,154,16,144),(7,153,17,143),(8,152,18,142),(9,151,19,141),(10,150,20,160),(21,47,31,57),(22,46,32,56),(23,45,33,55),(24,44,34,54),(25,43,35,53),(26,42,36,52),(27,41,37,51),(28,60,38,50),(29,59,39,49),(30,58,40,48),(61,112,71,102),(62,111,72,101),(63,110,73,120),(64,109,74,119),(65,108,75,118),(66,107,76,117),(67,106,77,116),(68,105,78,115),(69,104,79,114),(70,103,80,113),(81,122,91,132),(82,121,92,131),(83,140,93,130),(84,139,94,129),(85,138,95,128),(86,137,96,127),(87,136,97,126),(88,135,98,125),(89,134,99,124),(90,133,100,123)], [(1,117,33,121),(2,118,34,122),(3,119,35,123),(4,120,36,124),(5,101,37,125),(6,102,38,126),(7,103,39,127),(8,104,40,128),(9,105,21,129),(10,106,22,130),(11,107,23,131),(12,108,24,132),(13,109,25,133),(14,110,26,134),(15,111,27,135),(16,112,28,136),(17,113,29,137),(18,114,30,138),(19,115,31,139),(20,116,32,140),(41,88,145,62),(42,89,146,63),(43,90,147,64),(44,91,148,65),(45,92,149,66),(46,93,150,67),(47,94,151,68),(48,95,152,69),(49,96,153,70),(50,97,154,71),(51,98,155,72),(52,99,156,73),(53,100,157,74),(54,81,158,75),(55,82,159,76),(56,83,160,77),(57,84,141,78),(58,85,142,79),(59,86,143,80),(60,87,144,61)], [(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,81),(21,64),(22,65),(23,66),(24,67),(25,68),(26,69),(27,70),(28,71),(29,72),(30,73),(31,74),(32,75),(33,76),(34,77),(35,78),(36,79),(37,80),(38,61),(39,62),(40,63),(41,103),(42,104),(43,105),(44,106),(45,107),(46,108),(47,109),(48,110),(49,111),(50,112),(51,113),(52,114),(53,115),(54,116),(55,117),(56,118),(57,119),(58,120),(59,101),(60,102),(121,159),(122,160),(123,141),(124,142),(125,143),(126,144),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)])

Matrix representation G ⊆ GL4(𝔽41) generated by

111600
392700
0010
0001
,
382000
20300
00400
00040
,
243400
61700
0012
004040
,
1000
0100
004039
0001
G:=sub<GL(4,GF(41))| [11,39,0,0,16,27,0,0,0,0,1,0,0,0,0,1],[38,20,0,0,20,3,0,0,0,0,40,0,0,0,0,40],[24,6,0,0,34,17,0,0,0,0,1,40,0,0,2,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,39,1] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10F10G···10N20A···20H20I···20X
order1222222224···444444444445510···1010···1020···2020···20
size111122420202···2441010101020202020222···24···42···24···4

65 irreducible representations

dim111111111111222222222444
type+++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10C4○D202- (1+4)D4×D5D4.10D10
kernelDic1023D4C4×Dic10C4.D20Dic54D4Dic5.5D4D10⋊Q8C20.48D4C207D4Dic5⋊D4D4×C20C22×Dic10C2×C4○D20Dic10C4×D4C2×C10C42C22⋊C4C4⋊C4C22×C4C2×D4C22C10C4C2
# reps1112221121114242424216144

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{23}D_4
% in TeX

G:=Group("Dic10:23D4");
// GroupNames label

G:=SmallGroup(320,1224);
// by ID

G=gap.SmallGroup(320,1224);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^10*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽