Copied to
clipboard

?

G = D46Dic10order 320 = 26·5

2nd semidirect product of D4 and Dic10 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46Dic10, C42.107D10, C10.1012+ (1+4), (C5×D4)⋊7Q8, (C4×D4).14D5, C53(D43Q8), C20.43(C2×Q8), C4⋊C4.281D10, C202Q823C2, (D4×C20).15C2, (C4×Dic10)⋊29C2, (C2×D4).243D10, C20.48D49C2, (C2×C10).87C24, C4.Dic1015C2, (D4×Dic5).13C2, C4.16(C2×Dic10), C20.292(C4○D4), C10.14(C22×Q8), (C2×C20).156C23, (C4×C20).149C22, C22⋊C4.108D10, (C22×C4).206D10, C2.13(D48D10), C4.117(D42D5), C22.2(C2×Dic10), Dic5.14D48C2, (D4×C10).251C22, C4⋊Dic5.198C22, (C22×C20).80C22, (C4×Dic5).82C22, (C2×Dic5).37C23, C2.16(C22×Dic10), C10.D4.6C22, C23.166(C22×D5), C22.115(C23×D5), C23.D5.10C22, (C22×C10).157C23, (C2×Dic10).28C22, (C22×Dic5).94C22, (C2×C10).4(C2×Q8), (C2×C4⋊Dic5)⋊24C2, C10.73(C2×C4○D4), C2.21(C2×D42D5), (C5×C4⋊C4).323C22, (C2×C4).731(C22×D5), (C5×C22⋊C4).105C22, SmallGroup(320,1215)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D46Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D46Dic10
C5C2×C10 — D46Dic10

Subgroups: 694 in 228 conjugacy classes, 115 normal (29 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×11], C22, C22 [×4], C22 [×4], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×16], D4 [×4], Q8 [×4], C23 [×2], C10 [×3], C10 [×4], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×15], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×Q8 [×3], Dic5 [×8], C20 [×4], C20 [×3], C2×C10, C2×C10 [×4], C2×C10 [×4], C2×C4⋊C4 [×2], C4×D4, C4×D4 [×2], C4×Q8, C22⋊Q8 [×6], C42.C2 [×2], C4⋊Q8, Dic10 [×4], C2×Dic5 [×8], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×4], C22×C10 [×2], D43Q8, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5, C4⋊Dic5 [×8], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×Dic10 [×2], C22×Dic5 [×4], C22×C20 [×2], D4×C10, C4×Dic10, C202Q8, Dic5.14D4 [×4], C4.Dic10 [×2], C20.48D4 [×2], C2×C4⋊Dic5 [×2], D4×Dic5 [×2], D4×C20, D46Dic10

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22×Q8, C2×C4○D4, 2+ (1+4), Dic10 [×4], C22×D5 [×7], D43Q8, C2×Dic10 [×6], D42D5 [×2], C23×D5, C22×Dic10, C2×D42D5, D48D10, D46Dic10

Generators and relations
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a2b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 64 114 92)(2 65 115 93)(3 66 116 94)(4 67 117 95)(5 68 118 96)(6 69 119 97)(7 70 120 98)(8 71 101 99)(9 72 102 100)(10 73 103 81)(11 74 104 82)(12 75 105 83)(13 76 106 84)(14 77 107 85)(15 78 108 86)(16 79 109 87)(17 80 110 88)(18 61 111 89)(19 62 112 90)(20 63 113 91)(21 141 136 52)(22 142 137 53)(23 143 138 54)(24 144 139 55)(25 145 140 56)(26 146 121 57)(27 147 122 58)(28 148 123 59)(29 149 124 60)(30 150 125 41)(31 151 126 42)(32 152 127 43)(33 153 128 44)(34 154 129 45)(35 155 130 46)(36 156 131 47)(37 157 132 48)(38 158 133 49)(39 159 134 50)(40 160 135 51)
(1 74)(2 75)(3 76)(4 77)(5 78)(6 79)(7 80)(8 61)(9 62)(10 63)(11 64)(12 65)(13 66)(14 67)(15 68)(16 69)(17 70)(18 71)(19 72)(20 73)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 57)(37 58)(38 59)(39 60)(40 41)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 101)(90 102)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 111)(100 112)(121 156)(122 157)(123 158)(124 159)(125 160)(126 141)(127 142)(128 143)(129 144)(130 145)(131 146)(132 147)(133 148)(134 149)(135 150)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 134 11 124)(2 133 12 123)(3 132 13 122)(4 131 14 121)(5 130 15 140)(6 129 16 139)(7 128 17 138)(8 127 18 137)(9 126 19 136)(10 125 20 135)(21 102 31 112)(22 101 32 111)(23 120 33 110)(24 119 34 109)(25 118 35 108)(26 117 36 107)(27 116 37 106)(28 115 38 105)(29 114 39 104)(30 113 40 103)(41 63 51 73)(42 62 52 72)(43 61 53 71)(44 80 54 70)(45 79 55 69)(46 78 56 68)(47 77 57 67)(48 76 58 66)(49 75 59 65)(50 74 60 64)(81 150 91 160)(82 149 92 159)(83 148 93 158)(84 147 94 157)(85 146 95 156)(86 145 96 155)(87 144 97 154)(88 143 98 153)(89 142 99 152)(90 141 100 151)

G:=sub<Sym(160)| (1,64,114,92)(2,65,115,93)(3,66,116,94)(4,67,117,95)(5,68,118,96)(6,69,119,97)(7,70,120,98)(8,71,101,99)(9,72,102,100)(10,73,103,81)(11,74,104,82)(12,75,105,83)(13,76,106,84)(14,77,107,85)(15,78,108,86)(16,79,109,87)(17,80,110,88)(18,61,111,89)(19,62,112,90)(20,63,113,91)(21,141,136,52)(22,142,137,53)(23,143,138,54)(24,144,139,55)(25,145,140,56)(26,146,121,57)(27,147,122,58)(28,148,123,59)(29,149,124,60)(30,150,125,41)(31,151,126,42)(32,152,127,43)(33,153,128,44)(34,154,129,45)(35,155,130,46)(36,156,131,47)(37,157,132,48)(38,158,133,49)(39,159,134,50)(40,160,135,51), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,41)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,134,11,124)(2,133,12,123)(3,132,13,122)(4,131,14,121)(5,130,15,140)(6,129,16,139)(7,128,17,138)(8,127,18,137)(9,126,19,136)(10,125,20,135)(21,102,31,112)(22,101,32,111)(23,120,33,110)(24,119,34,109)(25,118,35,108)(26,117,36,107)(27,116,37,106)(28,115,38,105)(29,114,39,104)(30,113,40,103)(41,63,51,73)(42,62,52,72)(43,61,53,71)(44,80,54,70)(45,79,55,69)(46,78,56,68)(47,77,57,67)(48,76,58,66)(49,75,59,65)(50,74,60,64)(81,150,91,160)(82,149,92,159)(83,148,93,158)(84,147,94,157)(85,146,95,156)(86,145,96,155)(87,144,97,154)(88,143,98,153)(89,142,99,152)(90,141,100,151)>;

G:=Group( (1,64,114,92)(2,65,115,93)(3,66,116,94)(4,67,117,95)(5,68,118,96)(6,69,119,97)(7,70,120,98)(8,71,101,99)(9,72,102,100)(10,73,103,81)(11,74,104,82)(12,75,105,83)(13,76,106,84)(14,77,107,85)(15,78,108,86)(16,79,109,87)(17,80,110,88)(18,61,111,89)(19,62,112,90)(20,63,113,91)(21,141,136,52)(22,142,137,53)(23,143,138,54)(24,144,139,55)(25,145,140,56)(26,146,121,57)(27,147,122,58)(28,148,123,59)(29,149,124,60)(30,150,125,41)(31,151,126,42)(32,152,127,43)(33,153,128,44)(34,154,129,45)(35,155,130,46)(36,156,131,47)(37,157,132,48)(38,158,133,49)(39,159,134,50)(40,160,135,51), (1,74)(2,75)(3,76)(4,77)(5,78)(6,79)(7,80)(8,61)(9,62)(10,63)(11,64)(12,65)(13,66)(14,67)(15,68)(16,69)(17,70)(18,71)(19,72)(20,73)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,57)(37,58)(38,59)(39,60)(40,41)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,101)(90,102)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,111)(100,112)(121,156)(122,157)(123,158)(124,159)(125,160)(126,141)(127,142)(128,143)(129,144)(130,145)(131,146)(132,147)(133,148)(134,149)(135,150)(136,151)(137,152)(138,153)(139,154)(140,155), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,134,11,124)(2,133,12,123)(3,132,13,122)(4,131,14,121)(5,130,15,140)(6,129,16,139)(7,128,17,138)(8,127,18,137)(9,126,19,136)(10,125,20,135)(21,102,31,112)(22,101,32,111)(23,120,33,110)(24,119,34,109)(25,118,35,108)(26,117,36,107)(27,116,37,106)(28,115,38,105)(29,114,39,104)(30,113,40,103)(41,63,51,73)(42,62,52,72)(43,61,53,71)(44,80,54,70)(45,79,55,69)(46,78,56,68)(47,77,57,67)(48,76,58,66)(49,75,59,65)(50,74,60,64)(81,150,91,160)(82,149,92,159)(83,148,93,158)(84,147,94,157)(85,146,95,156)(86,145,96,155)(87,144,97,154)(88,143,98,153)(89,142,99,152)(90,141,100,151) );

G=PermutationGroup([(1,64,114,92),(2,65,115,93),(3,66,116,94),(4,67,117,95),(5,68,118,96),(6,69,119,97),(7,70,120,98),(8,71,101,99),(9,72,102,100),(10,73,103,81),(11,74,104,82),(12,75,105,83),(13,76,106,84),(14,77,107,85),(15,78,108,86),(16,79,109,87),(17,80,110,88),(18,61,111,89),(19,62,112,90),(20,63,113,91),(21,141,136,52),(22,142,137,53),(23,143,138,54),(24,144,139,55),(25,145,140,56),(26,146,121,57),(27,147,122,58),(28,148,123,59),(29,149,124,60),(30,150,125,41),(31,151,126,42),(32,152,127,43),(33,153,128,44),(34,154,129,45),(35,155,130,46),(36,156,131,47),(37,157,132,48),(38,158,133,49),(39,159,134,50),(40,160,135,51)], [(1,74),(2,75),(3,76),(4,77),(5,78),(6,79),(7,80),(8,61),(9,62),(10,63),(11,64),(12,65),(13,66),(14,67),(15,68),(16,69),(17,70),(18,71),(19,72),(20,73),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,57),(37,58),(38,59),(39,60),(40,41),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,101),(90,102),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,111),(100,112),(121,156),(122,157),(123,158),(124,159),(125,160),(126,141),(127,142),(128,143),(129,144),(130,145),(131,146),(132,147),(133,148),(134,149),(135,150),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,134,11,124),(2,133,12,123),(3,132,13,122),(4,131,14,121),(5,130,15,140),(6,129,16,139),(7,128,17,138),(8,127,18,137),(9,126,19,136),(10,125,20,135),(21,102,31,112),(22,101,32,111),(23,120,33,110),(24,119,34,109),(25,118,35,108),(26,117,36,107),(27,116,37,106),(28,115,38,105),(29,114,39,104),(30,113,40,103),(41,63,51,73),(42,62,52,72),(43,61,53,71),(44,80,54,70),(45,79,55,69),(46,78,56,68),(47,77,57,67),(48,76,58,66),(49,75,59,65),(50,74,60,64),(81,150,91,160),(82,149,92,159),(83,148,93,158),(84,147,94,157),(85,146,95,156),(86,145,96,155),(87,144,97,154),(88,143,98,153),(89,142,99,152),(90,141,100,151)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0040000
0004000
00004039
000011
,
4000000
0400000
001000
000100
000012
0000040
,
34400000
810000
0040500
0016100
0000400
0000040
,
35120000
2160000
0071200
00303400
0000918
00003232

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,2,40],[34,8,0,0,0,0,40,1,0,0,0,0,0,0,40,16,0,0,0,0,5,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[35,21,0,0,0,0,12,6,0,0,0,0,0,0,7,30,0,0,0,0,12,34,0,0,0,0,0,0,9,32,0,0,0,0,18,32] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++-++++++-+-+
imageC1C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D10D10Dic102+ (1+4)D42D5D48D10
kernelD46Dic10C4×Dic10C202Q8Dic5.14D4C4.Dic10C20.48D4C2×C4⋊Dic5D4×Dic5D4×C20C5×D4C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222214242424216144

In GAP, Magma, Sage, TeX

D_4\rtimes_6Dic_{10}
% in TeX

G:=Group("D4:6Dic10");
// GroupNames label

G:=SmallGroup(320,1215);
// by ID

G=gap.SmallGroup(320,1215);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,1571,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽