metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8⋊4F5, Dic20⋊2C4, C5⋊C8.1D4, (C5×D8)⋊3C4, C8.6(C2×F5), C40.5(C2×C4), D4.D5⋊2C4, C8⋊F5⋊2C2, D4.F5⋊2C2, D4.2(C2×F5), C2.18(D4×F5), C5⋊1(C8.26D4), D4⋊F5⋊2C2, C10.17(C4×D4), C40.C4⋊2C2, C4.4(C22×F5), D8⋊3D5.3C2, C20.4(C22×C4), D5⋊C8.2C22, (C4×F5).2C22, D10.2(C4○D4), C4.F5.2C22, Dic5.73(C2×D4), Dic10.2(C2×C4), (C4×D5).26C23, (C8×D5).14C22, D4⋊2D5.5C22, C5⋊2C8.8(C2×C4), (C5×D4).2(C2×C4), SmallGroup(320,1071)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 386 in 104 conjugacy classes, 40 normal (22 characteristic)
C1, C2, C2 [×3], C4, C4 [×4], C22 [×3], C5, C8, C8 [×5], C2×C4 [×4], D4 [×2], D4 [×2], Q8 [×2], D5, C10, C10 [×2], C42, C2×C8 [×4], M4(2) [×4], D8, SD16 [×2], Q16, C4○D4 [×2], Dic5, Dic5 [×2], C20, F5, D10, C2×C10 [×2], C8⋊C4, C4≀C2 [×2], C8.C4, C8○D4 [×2], C4○D8, C5⋊2C8, C40, C5⋊C8 [×2], C5⋊C8 [×2], Dic10 [×2], C4×D5, C2×Dic5 [×2], C5⋊D4 [×2], C5×D4 [×2], C2×F5, C8.26D4, C8×D5, Dic20, D4.D5 [×2], C5×D8, D5⋊C8, C4.F5 [×2], C4×F5, C2×C5⋊C8 [×2], C22.F5 [×2], D4⋊2D5 [×2], C8⋊F5, C40.C4, D4⋊F5 [×2], D8⋊3D5, D4.F5 [×2], D8⋊F5
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×F5 [×3], C8.26D4, C22×F5, D4×F5, D8⋊F5
Generators and relations
G = < a,b,c,d | a8=b2=c5=d4=1, bab=a-1, ac=ca, dad-1=a5, bc=cb, dbd-1=a2b, dcd-1=c3 >
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 59)(2 58)(3 57)(4 64)(5 63)(6 62)(7 61)(8 60)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 40)(16 39)(17 28)(18 27)(19 26)(20 25)(21 32)(22 31)(23 30)(24 29)(41 73)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 70)(50 69)(51 68)(52 67)(53 66)(54 65)(55 72)(56 71)
(1 10 29 77 66)(2 11 30 78 67)(3 12 31 79 68)(4 13 32 80 69)(5 14 25 73 70)(6 15 26 74 71)(7 16 27 75 72)(8 9 28 76 65)(17 46 54 60 38)(18 47 55 61 39)(19 48 56 62 40)(20 41 49 63 33)(21 42 50 64 34)(22 43 51 57 35)(23 44 52 58 36)(24 45 53 59 37)
(2 6)(4 8)(9 32 65 80)(10 29 66 77)(11 26 67 74)(12 31 68 79)(13 28 69 76)(14 25 70 73)(15 30 71 78)(16 27 72 75)(17 52 42 40)(18 49 43 37)(19 54 44 34)(20 51 45 39)(21 56 46 36)(22 53 47 33)(23 50 48 38)(24 55 41 35)(57 59 61 63)(58 64 62 60)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,58)(3,57)(4,64)(5,63)(6,62)(7,61)(8,60)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(41,73)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71), (1,10,29,77,66)(2,11,30,78,67)(3,12,31,79,68)(4,13,32,80,69)(5,14,25,73,70)(6,15,26,74,71)(7,16,27,75,72)(8,9,28,76,65)(17,46,54,60,38)(18,47,55,61,39)(19,48,56,62,40)(20,41,49,63,33)(21,42,50,64,34)(22,43,51,57,35)(23,44,52,58,36)(24,45,53,59,37), (2,6)(4,8)(9,32,65,80)(10,29,66,77)(11,26,67,74)(12,31,68,79)(13,28,69,76)(14,25,70,73)(15,30,71,78)(16,27,72,75)(17,52,42,40)(18,49,43,37)(19,54,44,34)(20,51,45,39)(21,56,46,36)(22,53,47,33)(23,50,48,38)(24,55,41,35)(57,59,61,63)(58,64,62,60)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,59)(2,58)(3,57)(4,64)(5,63)(6,62)(7,61)(8,60)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(17,28)(18,27)(19,26)(20,25)(21,32)(22,31)(23,30)(24,29)(41,73)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,72)(56,71), (1,10,29,77,66)(2,11,30,78,67)(3,12,31,79,68)(4,13,32,80,69)(5,14,25,73,70)(6,15,26,74,71)(7,16,27,75,72)(8,9,28,76,65)(17,46,54,60,38)(18,47,55,61,39)(19,48,56,62,40)(20,41,49,63,33)(21,42,50,64,34)(22,43,51,57,35)(23,44,52,58,36)(24,45,53,59,37), (2,6)(4,8)(9,32,65,80)(10,29,66,77)(11,26,67,74)(12,31,68,79)(13,28,69,76)(14,25,70,73)(15,30,71,78)(16,27,72,75)(17,52,42,40)(18,49,43,37)(19,54,44,34)(20,51,45,39)(21,56,46,36)(22,53,47,33)(23,50,48,38)(24,55,41,35)(57,59,61,63)(58,64,62,60) );
G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,59),(2,58),(3,57),(4,64),(5,63),(6,62),(7,61),(8,60),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,40),(16,39),(17,28),(18,27),(19,26),(20,25),(21,32),(22,31),(23,30),(24,29),(41,73),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,70),(50,69),(51,68),(52,67),(53,66),(54,65),(55,72),(56,71)], [(1,10,29,77,66),(2,11,30,78,67),(3,12,31,79,68),(4,13,32,80,69),(5,14,25,73,70),(6,15,26,74,71),(7,16,27,75,72),(8,9,28,76,65),(17,46,54,60,38),(18,47,55,61,39),(19,48,56,62,40),(20,41,49,63,33),(21,42,50,64,34),(22,43,51,57,35),(23,44,52,58,36),(24,45,53,59,37)], [(2,6),(4,8),(9,32,65,80),(10,29,66,77),(11,26,67,74),(12,31,68,79),(13,28,69,76),(14,25,70,73),(15,30,71,78),(16,27,72,75),(17,52,42,40),(18,49,43,37),(19,54,44,34),(20,51,45,39),(21,56,46,36),(22,53,47,33),(23,50,48,38),(24,55,41,35),(57,59,61,63),(58,64,62,60)])
Matrix representation ►G ⊆ GL8(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
40 | 40 | 40 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 40 | 40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,40] >;
Character table of D8⋊F5
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 10A | 10B | 10C | 20 | 40A | 40B | |
size | 1 | 1 | 4 | 4 | 10 | 2 | 5 | 5 | 20 | 20 | 20 | 20 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 4 | 16 | 16 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | i | -1 | -i | -1 | 1 | 1 | -i | i | i | -i | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ10 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -1 | -i | 1 | 1 | -1 | i | -i | -i | i | 1 | -i | i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -i | -1 | i | -1 | 1 | 1 | i | -i | -i | i | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -1 | i | 1 | 1 | -1 | -i | i | i | -i | 1 | i | -i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -i | 1 | i | -1 | 1 | -1 | -i | i | i | -i | 1 | -i | i | i | -i | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -i | 1 | i | 1 | 1 | 1 | i | -i | -i | i | -1 | -i | i | -i | i | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | i | 1 | -i | -1 | 1 | -1 | i | -i | -i | i | 1 | i | -i | -i | i | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | i | 1 | -i | 1 | 1 | 1 | -i | i | i | -i | -1 | i | -i | i | -i | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 4 |
ρ17 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2i | 2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2i | 2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ22 | 4 | 4 | -4 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ23 | 4 | 4 | 4 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ24 | 4 | 4 | 4 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | 4i | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.26D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | 4i | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | complex lifted from C8.26D4 |
ρ27 | 8 | 8 | 0 | 0 | 0 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4×F5 |
ρ28 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | √10 | √10 | symplectic faithful, Schur index 2 |
ρ29 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | √10 | √10 | symplectic faithful, Schur index 2 |
In GAP, Magma, Sage, TeX
D_8\rtimes F_5
% in TeX
G:=Group("D8:F5");
// GroupNames label
G:=SmallGroup(320,1071);
// by ID
G=gap.SmallGroup(320,1071);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,758,219,136,851,438,102,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^3>;
// generators/relations