Copied to
clipboard

?

G = SD16×F5order 320 = 26·5

Direct product of SD16 and F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD16×F5, C5⋊(C4×SD16), C85(C2×F5), C404(C2×C4), Q8⋊D51C4, (C8×F5)⋊4C2, (Q8×F5)⋊1C2, Q81(C2×F5), C40⋊C23C4, D4.D53C4, C40⋊C44C2, D4.3(C2×F5), (D4×F5).1C2, C2.19(D4×F5), Q8⋊F51C2, (C5×SD16)⋊3C4, D20.1(C2×C4), C10.18(C4×D4), (C2×F5).11D4, C4⋊F5.3C22, C4.5(C22×F5), Dic101(C2×C4), D5.3(C4○D8), D10.65(C2×D4), D20⋊C4.1C2, C20.5(C22×C4), D5.2(C2×SD16), (D5×SD16).2C2, (D4×D5).7C22, (Q8×D5).4C22, D5⋊C8.11C22, (C4×D5).27C23, (C8×D5).27C22, (C4×F5).11C22, Dic5.3(C4○D4), (C5×Q8)⋊1(C2×C4), C52C813(C2×C4), (C5×D4).3(C2×C4), SmallGroup(320,1072)

Series: Derived Chief Lower central Upper central

C1C20 — SD16×F5
C1C5C10D10C4×D5C4×F5D4×F5 — SD16×F5
C5C10C20 — SD16×F5

Subgroups: 546 in 122 conjugacy classes, 44 normal (42 characteristic)
C1, C2, C2 [×4], C4, C4 [×8], C22 [×5], C5, C8, C8 [×2], C2×C4 [×8], D4, D4 [×2], Q8, Q8 [×2], C23, D5 [×2], D5, C10, C10, C42 [×2], C22⋊C4, C4⋊C4 [×3], C2×C8 [×2], SD16, SD16 [×3], C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, F5 [×2], F5 [×3], D10, D10 [×3], C2×C10, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C52C8, C40, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C2×F5 [×2], C2×F5 [×4], C22×D5, C4×SD16, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D5⋊C8, C4×F5, C4×F5, C4⋊F5 [×2], C4⋊F5, C22⋊F5, D4×D5, Q8×D5, C22×F5, C8×F5, C40⋊C4, D20⋊C4, Q8⋊F5, D5×SD16, D4×F5, Q8×F5, SD16×F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, SD16 [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×SD16, C4○D8, C2×F5 [×3], C4×SD16, C22×F5, D4×F5, SD16×F5

Generators and relations
 G = < a,b,c,d | a8=b2=c5=d4=1, bab=a3, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

Smallest permutation representation
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)
(1 11 25 22 35)(2 12 26 23 36)(3 13 27 24 37)(4 14 28 17 38)(5 15 29 18 39)(6 16 30 19 40)(7 9 31 20 33)(8 10 32 21 34)
(1 5)(2 6)(3 7)(4 8)(9 27 33 24)(10 28 34 17)(11 29 35 18)(12 30 36 19)(13 31 37 20)(14 32 38 21)(15 25 39 22)(16 26 40 23)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38), (1,11,25,22,35)(2,12,26,23,36)(3,13,27,24,37)(4,14,28,17,38)(5,15,29,18,39)(6,16,30,19,40)(7,9,31,20,33)(8,10,32,21,34), (1,5)(2,6)(3,7)(4,8)(9,27,33,24)(10,28,34,17)(11,29,35,18)(12,30,36,19)(13,31,37,20)(14,32,38,21)(15,25,39,22)(16,26,40,23)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38), (1,11,25,22,35)(2,12,26,23,36)(3,13,27,24,37)(4,14,28,17,38)(5,15,29,18,39)(6,16,30,19,40)(7,9,31,20,33)(8,10,32,21,34), (1,5)(2,6)(3,7)(4,8)(9,27,33,24)(10,28,34,17)(11,29,35,18)(12,30,36,19)(13,31,37,20)(14,32,38,21)(15,25,39,22)(16,26,40,23) );

G=PermutationGroup([(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38)], [(1,11,25,22,35),(2,12,26,23,36),(3,13,27,24,37),(4,14,28,17,38),(5,15,29,18,39),(6,16,30,19,40),(7,9,31,20,33),(8,10,32,21,34)], [(1,5),(2,6),(3,7),(4,8),(9,27,33,24),(10,28,34,17),(11,29,35,18),(12,30,36,19),(13,31,37,20),(14,32,38,21),(15,25,39,22),(16,26,40,23)])

Matrix representation G ⊆ GL6(𝔽41)

15150000
26150000
0040000
0004000
0000400
0000040
,
4000000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0000040
0010040
0001040
0000140
,
3200000
0320000
000010
001000
000001
000100

G:=sub<GL(6,GF(41))| [15,26,0,0,0,0,15,15,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;

35 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J···4N 5 8A8B8C···8H10A10B20A20B40A40B
order1222224444444444···45888···8101020204040
size114552024555510101020···2042210···1041681688

35 irreducible representations

dim1111111111112222444488
type++++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4D4C4○D4SD16C4○D8F5C2×F5C2×F5C2×F5D4×F5SD16×F5
kernelSD16×F5C8×F5C40⋊C4D20⋊C4Q8⋊F5D5×SD16D4×F5Q8×F5C40⋊C2D4.D5Q8⋊D5C5×SD16C2×F5Dic5F5D5SD16C8D4Q8C2C1
# reps1111111122222244111112

In GAP, Magma, Sage, TeX

SD_{16}\times F_5
% in TeX

G:=Group("SD16xF5");
// GroupNames label

G:=SmallGroup(320,1072);
// by ID

G=gap.SmallGroup(320,1072);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,851,438,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽