metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic5⋊M4(2), C5⋊C8⋊1D4, C2.8(D4×F5), C5⋊1(C8⋊6D4), C10.4(C4×D4), D10⋊C8⋊8C2, C22⋊C4.4F5, C23.8(C2×F5), C10.5(C8○D4), C2.8(D4.F5), D10⋊C4.6C4, Dic5.68(C2×D4), C10.D4.2C4, C23.2F5⋊6C2, Dic5⋊C8⋊13C2, Dic5⋊4D4.9C2, C10.12(C2×M4(2)), Dic5.53(C4○D4), C22.71(C22×F5), C2.12(D5⋊M4(2)), (C2×Dic5).325C23, (C4×Dic5).248C22, (C22×Dic5).180C22, (C4×C5⋊C8)⋊12C2, (C2×C5⋊D4).6C4, (C2×C4.F5)⋊10C2, (C2×C4).22(C2×F5), (C2×C20).80(C2×C4), (C5×C22⋊C4).5C4, (C2×C5⋊C8).23C22, (C2×C22.F5)⋊2C2, (C2×C4×D5).274C22, (C2×C10).33(C22×C4), (C22×C10).16(C2×C4), (C2×Dic5).50(C2×C4), (C22×D5).42(C2×C4), SmallGroup(320,1033)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C4×C5⋊C8 — Dic5⋊M4(2) |
Subgroups: 442 in 122 conjugacy classes, 46 normal (42 characteristic)
C1, C2 [×3], C2 [×2], C4 [×7], C22, C22 [×6], C5, C8 [×5], C2×C4 [×2], C2×C4 [×7], D4 [×2], C23, C23, D5, C10 [×3], C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8 [×4], M4(2) [×4], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5 [×2], Dic5, C20 [×2], D10 [×3], C2×C10, C2×C10 [×3], C4×C8, C22⋊C8 [×2], C4⋊C8, C4×D4, C2×M4(2) [×2], C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×2], C5⋊D4 [×2], C2×C20 [×2], C22×D5, C22×C10, C8⋊6D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, C4.F5 [×2], C2×C5⋊C8 [×4], C22.F5 [×2], C2×C4×D5, C22×Dic5, C2×C5⋊D4, C4×C5⋊C8, D10⋊C8, Dic5⋊C8, C23.2F5, Dic5⋊4D4, C2×C4.F5, C2×C22.F5, Dic5⋊M4(2)
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, M4(2) [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5 [×3], C8⋊6D4, C22×F5, D5⋊M4(2), D4.F5, D4×F5, Dic5⋊M4(2)
Generators and relations
G = < a,b,c,d | a10=c8=d2=1, b2=a5, bab-1=a-1, cac-1=a7, ad=da, cbc-1=dbd=a5b, dcd=c5 >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 52 6 57)(2 51 7 56)(3 60 8 55)(4 59 9 54)(5 58 10 53)(11 123 16 128)(12 122 17 127)(13 121 18 126)(14 130 19 125)(15 129 20 124)(21 69 26 64)(22 68 27 63)(23 67 28 62)(24 66 29 61)(25 65 30 70)(31 75 36 80)(32 74 37 79)(33 73 38 78)(34 72 39 77)(35 71 40 76)(41 88 46 83)(42 87 47 82)(43 86 48 81)(44 85 49 90)(45 84 50 89)(91 131 96 136)(92 140 97 135)(93 139 98 134)(94 138 99 133)(95 137 100 132)(101 147 106 142)(102 146 107 141)(103 145 108 150)(104 144 109 149)(105 143 110 148)(111 157 116 152)(112 156 117 151)(113 155 118 160)(114 154 119 159)(115 153 120 158)
(1 119 33 104 25 126 45 96)(2 112 32 101 26 129 44 93)(3 115 31 108 27 122 43 100)(4 118 40 105 28 125 42 97)(5 111 39 102 29 128 41 94)(6 114 38 109 30 121 50 91)(7 117 37 106 21 124 49 98)(8 120 36 103 22 127 48 95)(9 113 35 110 23 130 47 92)(10 116 34 107 24 123 46 99)(11 83 138 53 157 72 146 66)(12 86 137 60 158 75 145 63)(13 89 136 57 159 78 144 70)(14 82 135 54 160 71 143 67)(15 85 134 51 151 74 142 64)(16 88 133 58 152 77 141 61)(17 81 132 55 153 80 150 68)(18 84 131 52 154 73 149 65)(19 87 140 59 155 76 148 62)(20 90 139 56 156 79 147 69)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 51)(11 112)(12 113)(13 114)(14 115)(15 116)(16 117)(17 118)(18 119)(19 120)(20 111)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 90)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 88)(50 89)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 141)(99 142)(100 143)(101 138)(102 139)(103 140)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(121 159)(122 160)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,52,6,57)(2,51,7,56)(3,60,8,55)(4,59,9,54)(5,58,10,53)(11,123,16,128)(12,122,17,127)(13,121,18,126)(14,130,19,125)(15,129,20,124)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,75,36,80)(32,74,37,79)(33,73,38,78)(34,72,39,77)(35,71,40,76)(41,88,46,83)(42,87,47,82)(43,86,48,81)(44,85,49,90)(45,84,50,89)(91,131,96,136)(92,140,97,135)(93,139,98,134)(94,138,99,133)(95,137,100,132)(101,147,106,142)(102,146,107,141)(103,145,108,150)(104,144,109,149)(105,143,110,148)(111,157,116,152)(112,156,117,151)(113,155,118,160)(114,154,119,159)(115,153,120,158), (1,119,33,104,25,126,45,96)(2,112,32,101,26,129,44,93)(3,115,31,108,27,122,43,100)(4,118,40,105,28,125,42,97)(5,111,39,102,29,128,41,94)(6,114,38,109,30,121,50,91)(7,117,37,106,21,124,49,98)(8,120,36,103,22,127,48,95)(9,113,35,110,23,130,47,92)(10,116,34,107,24,123,46,99)(11,83,138,53,157,72,146,66)(12,86,137,60,158,75,145,63)(13,89,136,57,159,78,144,70)(14,82,135,54,160,71,143,67)(15,85,134,51,151,74,142,64)(16,88,133,58,152,77,141,61)(17,81,132,55,153,80,150,68)(18,84,131,52,154,73,149,65)(19,87,140,59,155,76,148,62)(20,90,139,56,156,79,147,69), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,111)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,90)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,141)(99,142)(100,143)(101,138)(102,139)(103,140)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,52,6,57)(2,51,7,56)(3,60,8,55)(4,59,9,54)(5,58,10,53)(11,123,16,128)(12,122,17,127)(13,121,18,126)(14,130,19,125)(15,129,20,124)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,75,36,80)(32,74,37,79)(33,73,38,78)(34,72,39,77)(35,71,40,76)(41,88,46,83)(42,87,47,82)(43,86,48,81)(44,85,49,90)(45,84,50,89)(91,131,96,136)(92,140,97,135)(93,139,98,134)(94,138,99,133)(95,137,100,132)(101,147,106,142)(102,146,107,141)(103,145,108,150)(104,144,109,149)(105,143,110,148)(111,157,116,152)(112,156,117,151)(113,155,118,160)(114,154,119,159)(115,153,120,158), (1,119,33,104,25,126,45,96)(2,112,32,101,26,129,44,93)(3,115,31,108,27,122,43,100)(4,118,40,105,28,125,42,97)(5,111,39,102,29,128,41,94)(6,114,38,109,30,121,50,91)(7,117,37,106,21,124,49,98)(8,120,36,103,22,127,48,95)(9,113,35,110,23,130,47,92)(10,116,34,107,24,123,46,99)(11,83,138,53,157,72,146,66)(12,86,137,60,158,75,145,63)(13,89,136,57,159,78,144,70)(14,82,135,54,160,71,143,67)(15,85,134,51,151,74,142,64)(16,88,133,58,152,77,141,61)(17,81,132,55,153,80,150,68)(18,84,131,52,154,73,149,65)(19,87,140,59,155,76,148,62)(20,90,139,56,156,79,147,69), (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,51)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,111)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,90)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,88)(50,89)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,141)(99,142)(100,143)(101,138)(102,139)(103,140)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(121,159)(122,160)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,52,6,57),(2,51,7,56),(3,60,8,55),(4,59,9,54),(5,58,10,53),(11,123,16,128),(12,122,17,127),(13,121,18,126),(14,130,19,125),(15,129,20,124),(21,69,26,64),(22,68,27,63),(23,67,28,62),(24,66,29,61),(25,65,30,70),(31,75,36,80),(32,74,37,79),(33,73,38,78),(34,72,39,77),(35,71,40,76),(41,88,46,83),(42,87,47,82),(43,86,48,81),(44,85,49,90),(45,84,50,89),(91,131,96,136),(92,140,97,135),(93,139,98,134),(94,138,99,133),(95,137,100,132),(101,147,106,142),(102,146,107,141),(103,145,108,150),(104,144,109,149),(105,143,110,148),(111,157,116,152),(112,156,117,151),(113,155,118,160),(114,154,119,159),(115,153,120,158)], [(1,119,33,104,25,126,45,96),(2,112,32,101,26,129,44,93),(3,115,31,108,27,122,43,100),(4,118,40,105,28,125,42,97),(5,111,39,102,29,128,41,94),(6,114,38,109,30,121,50,91),(7,117,37,106,21,124,49,98),(8,120,36,103,22,127,48,95),(9,113,35,110,23,130,47,92),(10,116,34,107,24,123,46,99),(11,83,138,53,157,72,146,66),(12,86,137,60,158,75,145,63),(13,89,136,57,159,78,144,70),(14,82,135,54,160,71,143,67),(15,85,134,51,151,74,142,64),(16,88,133,58,152,77,141,61),(17,81,132,55,153,80,150,68),(18,84,131,52,154,73,149,65),(19,87,140,59,155,76,148,62),(20,90,139,56,156,79,147,69)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,51),(11,112),(12,113),(13,114),(14,115),(15,116),(16,117),(17,118),(18,119),(19,120),(20,111),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,90),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,88),(50,89),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,141),(99,142),(100,143),(101,138),(102,139),(103,140),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(121,159),(122,160),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 40 | 40 | 40 | 40 |
1 | 2 | 0 | 0 | 0 | 0 |
40 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 0 | 3 | 3 |
0 | 0 | 19 | 22 | 22 | 19 |
0 | 0 | 3 | 3 | 0 | 22 |
0 | 0 | 0 | 38 | 19 | 38 |
40 | 39 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 9 | 1 | 8 |
0 | 0 | 7 | 40 | 24 | 8 |
0 | 0 | 25 | 17 | 24 | 16 |
0 | 0 | 33 | 17 | 1 | 34 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 0 | 3 | 3 |
0 | 0 | 38 | 19 | 38 | 0 |
0 | 0 | 0 | 38 | 19 | 38 |
0 | 0 | 3 | 3 | 0 | 22 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,40,0,0,1,0,0,40,0,0,0,1,0,40,0,0,0,0,1,40],[1,40,0,0,0,0,2,40,0,0,0,0,0,0,22,19,3,0,0,0,0,22,3,38,0,0,3,22,0,19,0,0,3,19,22,38],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,25,7,25,33,0,0,9,40,17,17,0,0,1,24,24,1,0,0,8,8,16,34],[1,0,0,0,0,0,2,40,0,0,0,0,0,0,22,38,0,3,0,0,0,19,38,3,0,0,3,38,19,0,0,0,3,0,38,22] >;
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 20 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | M4(2) | C4○D4 | C8○D4 | F5 | C2×F5 | C2×F5 | D5⋊M4(2) | D4.F5 | D4×F5 |
kernel | Dic5⋊M4(2) | C4×C5⋊C8 | D10⋊C8 | Dic5⋊C8 | C23.2F5 | Dic5⋊4D4 | C2×C4.F5 | C2×C22.F5 | C10.D4 | D10⋊C4 | C5×C22⋊C4 | C2×C5⋊D4 | C5⋊C8 | Dic5 | Dic5 | C10 | C22⋊C4 | C2×C4 | C23 | C2 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 4 | 1 | 2 | 1 | 4 | 1 | 1 |
In GAP, Magma, Sage, TeX
Dic_5\rtimes M_{4(2)}
% in TeX
G:=Group("Dic5:M4(2)");
// GroupNames label
G:=SmallGroup(320,1033);
// by ID
G=gap.SmallGroup(320,1033);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,344,1094,219,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^10=c^8=d^2=1,b^2=a^5,b*a*b^-1=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=d*b*d=a^5*b,d*c*d=c^5>;
// generators/relations