direct product, non-abelian, soluble
Aliases: C5×C4.S4, C20.8S4, CSU2(𝔽3)⋊2C10, C4.2(C5×S4), C2.8(C10×S4), C10.33(C2×S4), C4.A4.1C10, Q8.3(S3×C10), (C5×Q8).15D6, (C5×CSU2(𝔽3))⋊6C2, SL2(𝔽3).3(C2×C10), (C5×SL2(𝔽3)).15C22, (C5×C4○D4).4S3, (C5×C4.A4).3C2, C4○D4.2(C5×S3), SmallGroup(480,1019)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — SL2(𝔽3) — C5×SL2(𝔽3) — C5×CSU2(𝔽3) — C5×C4.S4 |
SL2(𝔽3) — C5×C4.S4 |
Subgroups: 218 in 72 conjugacy classes, 20 normal (16 characteristic)
C1, C2, C2, C3, C4, C4 [×3], C22, C5, C6, C8 [×2], C2×C4 [×2], D4, Q8, Q8 [×3], C10, C10, Dic3 [×2], C12, C15, M4(2), SD16 [×2], Q16 [×2], C2×Q8, C4○D4, C20, C20 [×3], C2×C10, SL2(𝔽3), Dic6, C30, C8.C22, C40 [×2], C2×C20 [×2], C5×D4, C5×Q8, C5×Q8 [×3], CSU2(𝔽3) [×2], C4.A4, C5×Dic3 [×2], C60, C5×M4(2), C5×SD16 [×2], C5×Q16 [×2], Q8×C10, C5×C4○D4, C4.S4, C5×SL2(𝔽3), C5×Dic6, C5×C8.C22, C5×CSU2(𝔽3) [×2], C5×C4.A4, C5×C4.S4
Quotients:
C1, C2 [×3], C22, C5, S3, C10 [×3], D6, C2×C10, S4, C5×S3, C2×S4, S3×C10, C4.S4, C5×S4, C10×S4, C5×C4.S4
Generators and relations
G = < a,b,c,d,e,f | a5=b4=e3=1, c2=d2=f2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=b-1, dcd-1=b2c, ece-1=b2cd, fcf-1=cd, ede-1=c, fdf-1=b2d, fef-1=e-1 >
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 57 29 81)(2 58 30 82)(3 59 26 83)(4 60 27 84)(5 56 28 85)(6 96 136 125)(7 97 137 121)(8 98 138 122)(9 99 139 123)(10 100 140 124)(11 93 53 63)(12 94 54 64)(13 95 55 65)(14 91 51 61)(15 92 52 62)(16 117 157 146)(17 118 158 147)(18 119 159 148)(19 120 160 149)(20 116 156 150)(21 102 142 132)(22 103 143 133)(23 104 144 134)(24 105 145 135)(25 101 141 131)(31 112 152 126)(32 113 153 127)(33 114 154 128)(34 115 155 129)(35 111 151 130)(36 110 70 76)(37 106 66 77)(38 107 67 78)(39 108 68 79)(40 109 69 80)(41 86 46 72)(42 87 47 73)(43 88 48 74)(44 89 49 75)(45 90 50 71)
(1 37 29 66)(2 38 30 67)(3 39 26 68)(4 40 27 69)(5 36 28 70)(6 22 136 143)(7 23 137 144)(8 24 138 145)(9 25 139 141)(10 21 140 142)(11 41 53 46)(12 42 54 47)(13 43 55 48)(14 44 51 49)(15 45 52 50)(16 32 157 153)(17 33 158 154)(18 34 159 155)(19 35 160 151)(20 31 156 152)(56 110 85 76)(57 106 81 77)(58 107 82 78)(59 108 83 79)(60 109 84 80)(61 75 91 89)(62 71 92 90)(63 72 93 86)(64 73 94 87)(65 74 95 88)(96 103 125 133)(97 104 121 134)(98 105 122 135)(99 101 123 131)(100 102 124 132)(111 149 130 120)(112 150 126 116)(113 146 127 117)(114 147 128 118)(115 148 129 119)
(1 47 29 42)(2 48 30 43)(3 49 26 44)(4 50 27 45)(5 46 28 41)(6 152 136 31)(7 153 137 32)(8 154 138 33)(9 155 139 34)(10 151 140 35)(11 36 53 70)(12 37 54 66)(13 38 55 67)(14 39 51 68)(15 40 52 69)(16 23 157 144)(17 24 158 145)(18 25 159 141)(19 21 160 142)(20 22 156 143)(56 72 85 86)(57 73 81 87)(58 74 82 88)(59 75 83 89)(60 71 84 90)(61 79 91 108)(62 80 92 109)(63 76 93 110)(64 77 94 106)(65 78 95 107)(96 126 125 112)(97 127 121 113)(98 128 122 114)(99 129 123 115)(100 130 124 111)(101 148 131 119)(102 149 132 120)(103 150 133 116)(104 146 134 117)(105 147 135 118)
(11 36 46)(12 37 47)(13 38 48)(14 39 49)(15 40 50)(16 23 153)(17 24 154)(18 25 155)(19 21 151)(20 22 152)(31 156 143)(32 157 144)(33 158 145)(34 159 141)(35 160 142)(41 53 70)(42 54 66)(43 55 67)(44 51 68)(45 52 69)(61 79 89)(62 80 90)(63 76 86)(64 77 87)(65 78 88)(71 92 109)(72 93 110)(73 94 106)(74 95 107)(75 91 108)(101 129 119)(102 130 120)(103 126 116)(104 127 117)(105 128 118)(111 149 132)(112 150 133)(113 146 134)(114 147 135)(115 148 131)
(1 97 29 121)(2 98 30 122)(3 99 26 123)(4 100 27 124)(5 96 28 125)(6 85 136 56)(7 81 137 57)(8 82 138 58)(9 83 139 59)(10 84 140 60)(11 133 53 103)(12 134 54 104)(13 135 55 105)(14 131 51 101)(15 132 52 102)(16 106 157 77)(17 107 158 78)(18 108 159 79)(19 109 160 80)(20 110 156 76)(21 92 142 62)(22 93 143 63)(23 94 144 64)(24 95 145 65)(25 91 141 61)(31 86 152 72)(32 87 153 73)(33 88 154 74)(34 89 155 75)(35 90 151 71)(36 150 70 116)(37 146 66 117)(38 147 67 118)(39 148 68 119)(40 149 69 120)(41 126 46 112)(42 127 47 113)(43 128 48 114)(44 129 49 115)(45 130 50 111)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,57,29,81)(2,58,30,82)(3,59,26,83)(4,60,27,84)(5,56,28,85)(6,96,136,125)(7,97,137,121)(8,98,138,122)(9,99,139,123)(10,100,140,124)(11,93,53,63)(12,94,54,64)(13,95,55,65)(14,91,51,61)(15,92,52,62)(16,117,157,146)(17,118,158,147)(18,119,159,148)(19,120,160,149)(20,116,156,150)(21,102,142,132)(22,103,143,133)(23,104,144,134)(24,105,145,135)(25,101,141,131)(31,112,152,126)(32,113,153,127)(33,114,154,128)(34,115,155,129)(35,111,151,130)(36,110,70,76)(37,106,66,77)(38,107,67,78)(39,108,68,79)(40,109,69,80)(41,86,46,72)(42,87,47,73)(43,88,48,74)(44,89,49,75)(45,90,50,71), (1,37,29,66)(2,38,30,67)(3,39,26,68)(4,40,27,69)(5,36,28,70)(6,22,136,143)(7,23,137,144)(8,24,138,145)(9,25,139,141)(10,21,140,142)(11,41,53,46)(12,42,54,47)(13,43,55,48)(14,44,51,49)(15,45,52,50)(16,32,157,153)(17,33,158,154)(18,34,159,155)(19,35,160,151)(20,31,156,152)(56,110,85,76)(57,106,81,77)(58,107,82,78)(59,108,83,79)(60,109,84,80)(61,75,91,89)(62,71,92,90)(63,72,93,86)(64,73,94,87)(65,74,95,88)(96,103,125,133)(97,104,121,134)(98,105,122,135)(99,101,123,131)(100,102,124,132)(111,149,130,120)(112,150,126,116)(113,146,127,117)(114,147,128,118)(115,148,129,119), (1,47,29,42)(2,48,30,43)(3,49,26,44)(4,50,27,45)(5,46,28,41)(6,152,136,31)(7,153,137,32)(8,154,138,33)(9,155,139,34)(10,151,140,35)(11,36,53,70)(12,37,54,66)(13,38,55,67)(14,39,51,68)(15,40,52,69)(16,23,157,144)(17,24,158,145)(18,25,159,141)(19,21,160,142)(20,22,156,143)(56,72,85,86)(57,73,81,87)(58,74,82,88)(59,75,83,89)(60,71,84,90)(61,79,91,108)(62,80,92,109)(63,76,93,110)(64,77,94,106)(65,78,95,107)(96,126,125,112)(97,127,121,113)(98,128,122,114)(99,129,123,115)(100,130,124,111)(101,148,131,119)(102,149,132,120)(103,150,133,116)(104,146,134,117)(105,147,135,118), (11,36,46)(12,37,47)(13,38,48)(14,39,49)(15,40,50)(16,23,153)(17,24,154)(18,25,155)(19,21,151)(20,22,152)(31,156,143)(32,157,144)(33,158,145)(34,159,141)(35,160,142)(41,53,70)(42,54,66)(43,55,67)(44,51,68)(45,52,69)(61,79,89)(62,80,90)(63,76,86)(64,77,87)(65,78,88)(71,92,109)(72,93,110)(73,94,106)(74,95,107)(75,91,108)(101,129,119)(102,130,120)(103,126,116)(104,127,117)(105,128,118)(111,149,132)(112,150,133)(113,146,134)(114,147,135)(115,148,131), (1,97,29,121)(2,98,30,122)(3,99,26,123)(4,100,27,124)(5,96,28,125)(6,85,136,56)(7,81,137,57)(8,82,138,58)(9,83,139,59)(10,84,140,60)(11,133,53,103)(12,134,54,104)(13,135,55,105)(14,131,51,101)(15,132,52,102)(16,106,157,77)(17,107,158,78)(18,108,159,79)(19,109,160,80)(20,110,156,76)(21,92,142,62)(22,93,143,63)(23,94,144,64)(24,95,145,65)(25,91,141,61)(31,86,152,72)(32,87,153,73)(33,88,154,74)(34,89,155,75)(35,90,151,71)(36,150,70,116)(37,146,66,117)(38,147,67,118)(39,148,68,119)(40,149,69,120)(41,126,46,112)(42,127,47,113)(43,128,48,114)(44,129,49,115)(45,130,50,111)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,57,29,81)(2,58,30,82)(3,59,26,83)(4,60,27,84)(5,56,28,85)(6,96,136,125)(7,97,137,121)(8,98,138,122)(9,99,139,123)(10,100,140,124)(11,93,53,63)(12,94,54,64)(13,95,55,65)(14,91,51,61)(15,92,52,62)(16,117,157,146)(17,118,158,147)(18,119,159,148)(19,120,160,149)(20,116,156,150)(21,102,142,132)(22,103,143,133)(23,104,144,134)(24,105,145,135)(25,101,141,131)(31,112,152,126)(32,113,153,127)(33,114,154,128)(34,115,155,129)(35,111,151,130)(36,110,70,76)(37,106,66,77)(38,107,67,78)(39,108,68,79)(40,109,69,80)(41,86,46,72)(42,87,47,73)(43,88,48,74)(44,89,49,75)(45,90,50,71), (1,37,29,66)(2,38,30,67)(3,39,26,68)(4,40,27,69)(5,36,28,70)(6,22,136,143)(7,23,137,144)(8,24,138,145)(9,25,139,141)(10,21,140,142)(11,41,53,46)(12,42,54,47)(13,43,55,48)(14,44,51,49)(15,45,52,50)(16,32,157,153)(17,33,158,154)(18,34,159,155)(19,35,160,151)(20,31,156,152)(56,110,85,76)(57,106,81,77)(58,107,82,78)(59,108,83,79)(60,109,84,80)(61,75,91,89)(62,71,92,90)(63,72,93,86)(64,73,94,87)(65,74,95,88)(96,103,125,133)(97,104,121,134)(98,105,122,135)(99,101,123,131)(100,102,124,132)(111,149,130,120)(112,150,126,116)(113,146,127,117)(114,147,128,118)(115,148,129,119), (1,47,29,42)(2,48,30,43)(3,49,26,44)(4,50,27,45)(5,46,28,41)(6,152,136,31)(7,153,137,32)(8,154,138,33)(9,155,139,34)(10,151,140,35)(11,36,53,70)(12,37,54,66)(13,38,55,67)(14,39,51,68)(15,40,52,69)(16,23,157,144)(17,24,158,145)(18,25,159,141)(19,21,160,142)(20,22,156,143)(56,72,85,86)(57,73,81,87)(58,74,82,88)(59,75,83,89)(60,71,84,90)(61,79,91,108)(62,80,92,109)(63,76,93,110)(64,77,94,106)(65,78,95,107)(96,126,125,112)(97,127,121,113)(98,128,122,114)(99,129,123,115)(100,130,124,111)(101,148,131,119)(102,149,132,120)(103,150,133,116)(104,146,134,117)(105,147,135,118), (11,36,46)(12,37,47)(13,38,48)(14,39,49)(15,40,50)(16,23,153)(17,24,154)(18,25,155)(19,21,151)(20,22,152)(31,156,143)(32,157,144)(33,158,145)(34,159,141)(35,160,142)(41,53,70)(42,54,66)(43,55,67)(44,51,68)(45,52,69)(61,79,89)(62,80,90)(63,76,86)(64,77,87)(65,78,88)(71,92,109)(72,93,110)(73,94,106)(74,95,107)(75,91,108)(101,129,119)(102,130,120)(103,126,116)(104,127,117)(105,128,118)(111,149,132)(112,150,133)(113,146,134)(114,147,135)(115,148,131), (1,97,29,121)(2,98,30,122)(3,99,26,123)(4,100,27,124)(5,96,28,125)(6,85,136,56)(7,81,137,57)(8,82,138,58)(9,83,139,59)(10,84,140,60)(11,133,53,103)(12,134,54,104)(13,135,55,105)(14,131,51,101)(15,132,52,102)(16,106,157,77)(17,107,158,78)(18,108,159,79)(19,109,160,80)(20,110,156,76)(21,92,142,62)(22,93,143,63)(23,94,144,64)(24,95,145,65)(25,91,141,61)(31,86,152,72)(32,87,153,73)(33,88,154,74)(34,89,155,75)(35,90,151,71)(36,150,70,116)(37,146,66,117)(38,147,67,118)(39,148,68,119)(40,149,69,120)(41,126,46,112)(42,127,47,113)(43,128,48,114)(44,129,49,115)(45,130,50,111) );
G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,57,29,81),(2,58,30,82),(3,59,26,83),(4,60,27,84),(5,56,28,85),(6,96,136,125),(7,97,137,121),(8,98,138,122),(9,99,139,123),(10,100,140,124),(11,93,53,63),(12,94,54,64),(13,95,55,65),(14,91,51,61),(15,92,52,62),(16,117,157,146),(17,118,158,147),(18,119,159,148),(19,120,160,149),(20,116,156,150),(21,102,142,132),(22,103,143,133),(23,104,144,134),(24,105,145,135),(25,101,141,131),(31,112,152,126),(32,113,153,127),(33,114,154,128),(34,115,155,129),(35,111,151,130),(36,110,70,76),(37,106,66,77),(38,107,67,78),(39,108,68,79),(40,109,69,80),(41,86,46,72),(42,87,47,73),(43,88,48,74),(44,89,49,75),(45,90,50,71)], [(1,37,29,66),(2,38,30,67),(3,39,26,68),(4,40,27,69),(5,36,28,70),(6,22,136,143),(7,23,137,144),(8,24,138,145),(9,25,139,141),(10,21,140,142),(11,41,53,46),(12,42,54,47),(13,43,55,48),(14,44,51,49),(15,45,52,50),(16,32,157,153),(17,33,158,154),(18,34,159,155),(19,35,160,151),(20,31,156,152),(56,110,85,76),(57,106,81,77),(58,107,82,78),(59,108,83,79),(60,109,84,80),(61,75,91,89),(62,71,92,90),(63,72,93,86),(64,73,94,87),(65,74,95,88),(96,103,125,133),(97,104,121,134),(98,105,122,135),(99,101,123,131),(100,102,124,132),(111,149,130,120),(112,150,126,116),(113,146,127,117),(114,147,128,118),(115,148,129,119)], [(1,47,29,42),(2,48,30,43),(3,49,26,44),(4,50,27,45),(5,46,28,41),(6,152,136,31),(7,153,137,32),(8,154,138,33),(9,155,139,34),(10,151,140,35),(11,36,53,70),(12,37,54,66),(13,38,55,67),(14,39,51,68),(15,40,52,69),(16,23,157,144),(17,24,158,145),(18,25,159,141),(19,21,160,142),(20,22,156,143),(56,72,85,86),(57,73,81,87),(58,74,82,88),(59,75,83,89),(60,71,84,90),(61,79,91,108),(62,80,92,109),(63,76,93,110),(64,77,94,106),(65,78,95,107),(96,126,125,112),(97,127,121,113),(98,128,122,114),(99,129,123,115),(100,130,124,111),(101,148,131,119),(102,149,132,120),(103,150,133,116),(104,146,134,117),(105,147,135,118)], [(11,36,46),(12,37,47),(13,38,48),(14,39,49),(15,40,50),(16,23,153),(17,24,154),(18,25,155),(19,21,151),(20,22,152),(31,156,143),(32,157,144),(33,158,145),(34,159,141),(35,160,142),(41,53,70),(42,54,66),(43,55,67),(44,51,68),(45,52,69),(61,79,89),(62,80,90),(63,76,86),(64,77,87),(65,78,88),(71,92,109),(72,93,110),(73,94,106),(74,95,107),(75,91,108),(101,129,119),(102,130,120),(103,126,116),(104,127,117),(105,128,118),(111,149,132),(112,150,133),(113,146,134),(114,147,135),(115,148,131)], [(1,97,29,121),(2,98,30,122),(3,99,26,123),(4,100,27,124),(5,96,28,125),(6,85,136,56),(7,81,137,57),(8,82,138,58),(9,83,139,59),(10,84,140,60),(11,133,53,103),(12,134,54,104),(13,135,55,105),(14,131,51,101),(15,132,52,102),(16,106,157,77),(17,107,158,78),(18,108,159,79),(19,109,160,80),(20,110,156,76),(21,92,142,62),(22,93,143,63),(23,94,144,64),(24,95,145,65),(25,91,141,61),(31,86,152,72),(32,87,153,73),(33,88,154,74),(34,89,155,75),(35,90,151,71),(36,150,70,116),(37,146,66,117),(38,147,67,118),(39,148,68,119),(40,149,69,120),(41,126,46,112),(42,127,47,113),(43,128,48,114),(44,129,49,115),(45,130,50,111)])
Matrix representation ►G ⊆ GL7(𝔽241)
205 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 205 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 205 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 142 | 99 | 142 |
0 | 0 | 0 | 99 | 0 | 142 | 142 |
0 | 0 | 0 | 142 | 99 | 0 | 142 |
0 | 0 | 0 | 99 | 99 | 99 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 240 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 240 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
240 | 240 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 240 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
240 | 240 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 240 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 240 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 182 | 98 | 143 | 98 |
0 | 0 | 0 | 98 | 143 | 182 | 98 |
0 | 0 | 0 | 143 | 182 | 98 | 98 |
0 | 0 | 0 | 98 | 98 | 98 | 59 |
G:=sub<GL(7,GF(241))| [205,0,0,0,0,0,0,0,205,0,0,0,0,0,0,0,205,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,99,142,99,0,0,0,142,0,99,99,0,0,0,99,142,0,99,0,0,0,142,142,142,0],[0,1,240,0,0,0,0,1,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,240,0],[240,0,0,0,0,0,0,240,0,1,0,0,0,0,240,1,0,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,1,0,0,0,0,0,240,0,0,0,0,0,1,0,0,0],[1,0,240,0,0,0,0,0,0,240,0,0,0,0,0,1,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,240,0,0,0,0,0,0,0,240,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,182,98,143,98,0,0,0,98,143,182,98,0,0,0,143,182,98,98,0,0,0,98,98,98,59] >;
65 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 5C | 5D | 6 | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | ··· | 20P | 30A | 30B | 30C | 30D | 40A | ··· | 40H | 60A | ··· | 60H |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | ··· | 20 | 30 | 30 | 30 | 30 | 40 | ··· | 40 | 60 | ··· | 60 |
size | 1 | 1 | 6 | 8 | 2 | 6 | 12 | 12 | 1 | 1 | 1 | 1 | 8 | 12 | 12 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 8 | ··· | 8 |
65 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 |
type | + | + | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C5 | C10 | C10 | S3 | D6 | C5×S3 | S3×C10 | S4 | C2×S4 | C5×S4 | C10×S4 | C4.S4 | C5×C4.S4 |
kernel | C5×C4.S4 | C5×CSU2(𝔽3) | C5×C4.A4 | C4.S4 | CSU2(𝔽3) | C4.A4 | C5×C4○D4 | C5×Q8 | C4○D4 | Q8 | C20 | C10 | C4 | C2 | C5 | C1 |
# reps | 1 | 2 | 1 | 4 | 8 | 4 | 1 | 1 | 4 | 4 | 2 | 2 | 8 | 8 | 3 | 12 |
In GAP, Magma, Sage, TeX
C_5\times C_4.S_4
% in TeX
G:=Group("C5xC4.S4");
// GroupNames label
G:=SmallGroup(480,1019);
// by ID
G=gap.SmallGroup(480,1019);
# by ID
G:=PCGroup([7,-2,-2,-5,-3,-2,2,-2,1680,3389,1688,1123,4204,655,172,2525,404,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^4=e^3=1,c^2=d^2=f^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b^-1,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=b^2*d,f*e*f^-1=e^-1>;
// generators/relations