Copied to
clipboard

G = Q8.2SD16order 128 = 27

2nd non-split extension by Q8 of SD16 acting via SD16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8.2SD16, C42.229C23, C82C84C2, (C8×Q8)⋊20C2, C4⋊C4.204D4, C4.Q166C2, (C2×C8).312D4, C4.69(C4○D8), C4⋊C8.24C22, (C2×Q8).152D4, C4⋊SD16.7C2, C4.41(C2×SD16), C4.D8.2C2, C4⋊Q8.52C22, C2.13(C88D4), (C4×C8).254C22, C4.6Q1616C2, C4.4D8.11C2, C41D4.29C22, C4.91(C8.C22), C2.8(Q8.D4), (C4×Q8).267C22, C2.11(D4.4D4), C22.190(C4⋊D4), (C2×C4).14(C4○D4), (C2×C4).1264(C2×D4), SmallGroup(128,410)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q8.2SD16
C1C2C22C2×C4C42C4×Q8C8×Q8 — Q8.2SD16
C1C22C42 — Q8.2SD16
C1C22C42 — Q8.2SD16
C1C22C22C42 — Q8.2SD16

Generators and relations for Q8.2SD16
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, bc=cb, dbd=a-1b, dcd=a2c3 >

Subgroups: 200 in 80 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C2×D4, C2×Q8, C2×Q8, C4×C8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C41D4, C4⋊Q8, C2×SD16, C4.D8, C4.6Q16, C82C8, C8×Q8, C4⋊SD16, C4.Q16, C4.4D8, Q8.2SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2×D4, C4○D4, C4⋊D4, C2×SD16, C4○D8, C8.C22, Q8.D4, C88D4, D4.4D4, Q8.2SD16

Character table of Q8.2SD16

 class 12A2B2C2D4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111162222444441622224444448888
ρ111111111111111111111111111111    trivial
ρ21111-1111111111-11111111111-1-1-1-1    linear of order 2
ρ31111-11111-1-11-1-1-11111-1-1-111-11111    linear of order 2
ρ4111111111-1-11-1-111111-1-1-111-1-1-1-1-1    linear of order 2
ρ51111-11111-1-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ6111111111-1-11-1-1-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ711111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ81111-11111111111-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ922220-22-2200-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ1022220-22-2200-20002222000-2-200000    orthogonal lifted from D4
ρ11222202-22-2-22-2-22000000000000000    orthogonal lifted from D4
ρ12222202-22-22-2-22-2000000000000000    orthogonal lifted from D4
ρ1322220-2-2-2-20020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ1422220-2-2-2-200200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ152-22-20020-2000000-2i2i2i-2i000000-2--22-2    complex lifted from C4○D8
ρ1622-2-20-20202i00-2i00--2-2--2-2-22-2--2-220000    complex lifted from C4○D8
ρ172-22-20020-20000002i-2i-2i2i0000002--2-2-2    complex lifted from C4○D8
ρ1822-2-2020-200200-20--2-2--2-2-2--2--2-2--2-20000    complex lifted from SD16
ρ1922-2-2020-200-20020-2--2-2--2-2--2--2--2-2-20000    complex lifted from SD16
ρ2022-2-20-2020-2i002i00-2--2-2--2-22-2-2--220000    complex lifted from C4○D8
ρ212-22-20020-2000000-2i2i2i-2i0000002-2-2--2    complex lifted from C4○D8
ρ2222-2-20-2020-2i002i00--2-2--2-22-22--2-2-20000    complex lifted from C4○D8
ρ2322-2-20-20202i00-2i00-2--2-2--22-22-2--2-20000    complex lifted from C4○D8
ρ2422-2-2020-200200-20-2--2-2--2--2-2-2--2-2--20000    complex lifted from SD16
ρ252-22-20020-20000002i-2i-2i2i000000-2-22--2    complex lifted from C4○D8
ρ2622-2-2020-200-20020--2-2--2-2--2-2-2-2--2--20000    complex lifted from SD16
ρ274-4-44000000000002222-22-220000000000    orthogonal lifted from D4.4D4
ρ284-4-4400000000000-22-2222220000000000    orthogonal lifted from D4.4D4
ρ294-44-400-40400000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of Q8.2SD16
On 64 points
Generators in S64
(1 61 52 11)(2 62 53 12)(3 63 54 13)(4 64 55 14)(5 57 56 15)(6 58 49 16)(7 59 50 9)(8 60 51 10)(17 36 25 47)(18 37 26 48)(19 38 27 41)(20 39 28 42)(21 40 29 43)(22 33 30 44)(23 34 31 45)(24 35 32 46)
(1 17 52 25)(2 18 53 26)(3 19 54 27)(4 20 55 28)(5 21 56 29)(6 22 49 30)(7 23 50 31)(8 24 51 32)(9 34 59 45)(10 35 60 46)(11 36 61 47)(12 37 62 48)(13 38 63 41)(14 39 64 42)(15 40 57 43)(16 33 58 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 55)(3 7)(4 53)(6 51)(8 49)(9 63)(10 16)(11 61)(12 14)(13 59)(15 57)(17 36)(18 42)(19 34)(20 48)(21 40)(22 46)(23 38)(24 44)(25 47)(26 39)(27 45)(28 37)(29 43)(30 35)(31 41)(32 33)(50 54)(58 60)(62 64)

G:=sub<Sym(64)| (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (1,17,52,25)(2,18,53,26)(3,19,54,27)(4,20,55,28)(5,21,56,29)(6,22,49,30)(7,23,50,31)(8,24,51,32)(9,34,59,45)(10,35,60,46)(11,36,61,47)(12,37,62,48)(13,38,63,41)(14,39,64,42)(15,40,57,43)(16,33,58,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64)>;

G:=Group( (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (1,17,52,25)(2,18,53,26)(3,19,54,27)(4,20,55,28)(5,21,56,29)(6,22,49,30)(7,23,50,31)(8,24,51,32)(9,34,59,45)(10,35,60,46)(11,36,61,47)(12,37,62,48)(13,38,63,41)(14,39,64,42)(15,40,57,43)(16,33,58,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64) );

G=PermutationGroup([[(1,61,52,11),(2,62,53,12),(3,63,54,13),(4,64,55,14),(5,57,56,15),(6,58,49,16),(7,59,50,9),(8,60,51,10),(17,36,25,47),(18,37,26,48),(19,38,27,41),(20,39,28,42),(21,40,29,43),(22,33,30,44),(23,34,31,45),(24,35,32,46)], [(1,17,52,25),(2,18,53,26),(3,19,54,27),(4,20,55,28),(5,21,56,29),(6,22,49,30),(7,23,50,31),(8,24,51,32),(9,34,59,45),(10,35,60,46),(11,36,61,47),(12,37,62,48),(13,38,63,41),(14,39,64,42),(15,40,57,43),(16,33,58,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,55),(3,7),(4,53),(6,51),(8,49),(9,63),(10,16),(11,61),(12,14),(13,59),(15,57),(17,36),(18,42),(19,34),(20,48),(21,40),(22,46),(23,38),(24,44),(25,47),(26,39),(27,45),(28,37),(29,43),(30,35),(31,41),(32,33),(50,54),(58,60),(62,64)]])

Matrix representation of Q8.2SD16 in GL4(𝔽17) generated by

161500
1100
0010
0001
,
01000
5000
00160
00016
,
13000
01300
001010
00120
,
1000
161600
0010
001616
G:=sub<GL(4,GF(17))| [16,1,0,0,15,1,0,0,0,0,1,0,0,0,0,1],[0,5,0,0,10,0,0,0,0,0,16,0,0,0,0,16],[13,0,0,0,0,13,0,0,0,0,10,12,0,0,10,0],[1,16,0,0,0,16,0,0,0,0,1,16,0,0,0,16] >;

Q8.2SD16 in GAP, Magma, Sage, TeX

Q_8._2{\rm SD}_{16}
% in TeX

G:=Group("Q8.2SD16");
// GroupNames label

G:=SmallGroup(128,410);
// by ID

G=gap.SmallGroup(128,410);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,512,422,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,d*b*d=a^-1*b,d*c*d=a^2*c^3>;
// generators/relations

Export

Character table of Q8.2SD16 in TeX

׿
×
𝔽