p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8.2D8, C42.233C23, (C8×Q8)⋊6C2, C8⋊1C8⋊9C2, C4.36(C2×D8), C4⋊C4.208D4, C4⋊2Q16⋊6C2, (C2×C8).316D4, C4.89(C4○D8), C4⋊C8.26C22, (C4×C8).58C22, C4⋊SD16.8C2, (C2×Q8).154D4, C4.D8.3C2, C4.4D8.5C2, C4⋊Q8.56C22, C4.10D8⋊25C2, C2.11(C8⋊7D4), C4⋊1D4.31C22, C4.93(C8.C22), (C4×Q8).269C22, C2.13(D4.3D4), C2.10(Q8.D4), C22.194(C4⋊D4), (C2×C4).18(C4○D4), (C2×C4).1268(C2×D4), SmallGroup(128,414)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8.2D8
G = < a,b,c,d | a4=c8=1, b2=d2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a2c-1 >
Subgroups: 208 in 83 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, C4×C8, C4×C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4⋊C8, C4×Q8, C4⋊1D4, C4⋊Q8, C2×SD16, C2×Q16, C4.D8, C4.10D8, C8⋊1C8, C8×Q8, C4⋊SD16, C4⋊2Q16, C4.4D8, Q8.2D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C4○D4, C4⋊D4, C2×D8, C4○D8, C8.C22, Q8.D4, C8⋊7D4, D4.3D4, Q8.2D8
Character table of Q8.2D8
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √2 | √-2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | √2 | -√2 | √2 | -√2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | -√2 | √2 | -√2 | √2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | √2 | -√2 | √2 | -√2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | -√2 | √2 | -√2 | √2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 61 20 13)(2 62 21 14)(3 63 22 15)(4 64 23 16)(5 57 24 9)(6 58 17 10)(7 59 18 11)(8 60 19 12)(25 41 54 36)(26 42 55 37)(27 43 56 38)(28 44 49 39)(29 45 50 40)(30 46 51 33)(31 47 52 34)(32 48 53 35)
(1 54 20 25)(2 55 21 26)(3 56 22 27)(4 49 23 28)(5 50 24 29)(6 51 17 30)(7 52 18 31)(8 53 19 32)(9 40 57 45)(10 33 58 46)(11 34 59 47)(12 35 60 48)(13 36 61 41)(14 37 62 42)(15 38 63 43)(16 39 64 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19 20 8)(2 7 21 18)(3 17 22 6)(4 5 23 24)(9 16 57 64)(10 63 58 15)(11 14 59 62)(12 61 60 13)(25 35 54 48)(26 47 55 34)(27 33 56 46)(28 45 49 40)(29 39 50 44)(30 43 51 38)(31 37 52 42)(32 41 53 36)
G:=sub<Sym(64)| (1,61,20,13)(2,62,21,14)(3,63,22,15)(4,64,23,16)(5,57,24,9)(6,58,17,10)(7,59,18,11)(8,60,19,12)(25,41,54,36)(26,42,55,37)(27,43,56,38)(28,44,49,39)(29,45,50,40)(30,46,51,33)(31,47,52,34)(32,48,53,35), (1,54,20,25)(2,55,21,26)(3,56,22,27)(4,49,23,28)(5,50,24,29)(6,51,17,30)(7,52,18,31)(8,53,19,32)(9,40,57,45)(10,33,58,46)(11,34,59,47)(12,35,60,48)(13,36,61,41)(14,37,62,42)(15,38,63,43)(16,39,64,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,20,8)(2,7,21,18)(3,17,22,6)(4,5,23,24)(9,16,57,64)(10,63,58,15)(11,14,59,62)(12,61,60,13)(25,35,54,48)(26,47,55,34)(27,33,56,46)(28,45,49,40)(29,39,50,44)(30,43,51,38)(31,37,52,42)(32,41,53,36)>;
G:=Group( (1,61,20,13)(2,62,21,14)(3,63,22,15)(4,64,23,16)(5,57,24,9)(6,58,17,10)(7,59,18,11)(8,60,19,12)(25,41,54,36)(26,42,55,37)(27,43,56,38)(28,44,49,39)(29,45,50,40)(30,46,51,33)(31,47,52,34)(32,48,53,35), (1,54,20,25)(2,55,21,26)(3,56,22,27)(4,49,23,28)(5,50,24,29)(6,51,17,30)(7,52,18,31)(8,53,19,32)(9,40,57,45)(10,33,58,46)(11,34,59,47)(12,35,60,48)(13,36,61,41)(14,37,62,42)(15,38,63,43)(16,39,64,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19,20,8)(2,7,21,18)(3,17,22,6)(4,5,23,24)(9,16,57,64)(10,63,58,15)(11,14,59,62)(12,61,60,13)(25,35,54,48)(26,47,55,34)(27,33,56,46)(28,45,49,40)(29,39,50,44)(30,43,51,38)(31,37,52,42)(32,41,53,36) );
G=PermutationGroup([[(1,61,20,13),(2,62,21,14),(3,63,22,15),(4,64,23,16),(5,57,24,9),(6,58,17,10),(7,59,18,11),(8,60,19,12),(25,41,54,36),(26,42,55,37),(27,43,56,38),(28,44,49,39),(29,45,50,40),(30,46,51,33),(31,47,52,34),(32,48,53,35)], [(1,54,20,25),(2,55,21,26),(3,56,22,27),(4,49,23,28),(5,50,24,29),(6,51,17,30),(7,52,18,31),(8,53,19,32),(9,40,57,45),(10,33,58,46),(11,34,59,47),(12,35,60,48),(13,36,61,41),(14,37,62,42),(15,38,63,43),(16,39,64,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19,20,8),(2,7,21,18),(3,17,22,6),(4,5,23,24),(9,16,57,64),(10,63,58,15),(11,14,59,62),(12,61,60,13),(25,35,54,48),(26,47,55,34),(27,33,56,46),(28,45,49,40),(29,39,50,44),(30,43,51,38),(31,37,52,42),(32,41,53,36)]])
Matrix representation of Q8.2D8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 15 |
0 | 0 | 1 | 16 |
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 7 | 10 |
0 | 0 | 12 | 10 |
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
14 | 3 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 13 | 4 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,1,0,0,15,16],[0,4,0,0,13,0,0,0,0,0,7,12,0,0,10,10],[14,14,0,0,3,14,0,0,0,0,13,0,0,0,0,13],[14,3,0,0,3,3,0,0,0,0,13,13,0,0,0,4] >;
Q8.2D8 in GAP, Magma, Sage, TeX
Q_8._2D_8
% in TeX
G:=Group("Q8.2D8");
// GroupNames label
G:=SmallGroup(128,414);
// by ID
G=gap.SmallGroup(128,414);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,736,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export