Copied to
clipboard

G = SD16:Q8order 128 = 27

1st semidirect product of SD16 and Q8 acting via Q8/C4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: SD16:1Q8, C42.66C23, C4.1002- 1+4, Q82:7C2, C8:Q8:32C2, C8.6(C2xQ8), C2.43(D4xQ8), C4:C4.388D4, C8:4Q8:15C2, C8:2Q8:33C2, Q8.Q8:51C2, Q8.11(C2xQ8), D4.11(C2xQ8), C4.Q16:46C2, C2.68(D4oD8), (C2xQ8).249D4, D4:2Q8.2C2, (C4xSD16).5C2, C4.43(C22xQ8), C4:C8.144C22, C4:C4.274C23, (C2xC4).577C24, (C2xC8).214C23, (C4xC8).201C22, D4:3Q8.10C2, D4:Q8.12C2, C4:Q8.206C22, C2.D8.75C22, C8:C4.70C22, C4.Q8.77C22, SD16:C4.3C2, (C2xD4).438C23, (C4xD4).213C22, C4.53(C8.C22), (C2xQ8).411C23, (C4xQ8).204C22, D4:C4.94C22, C22.837(C22xD4), C42.C2.75C22, Q8:C4.165C22, (C2xSD16).123C22, (C2xC4).647(C2xD4), C2.90(C2xC8.C22), SmallGroup(128,2117)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — SD16:Q8
C1C2C4C2xC4C42C4xD4D4:3Q8 — SD16:Q8
C1C2C2xC4 — SD16:Q8
C1C22C4xQ8 — SD16:Q8
C1C2C2C2xC4 — SD16:Q8

Generators and relations for SD16:Q8
 G = < a,b,c,d | a8=b2=c4=1, d2=c2, bab=a3, ac=ca, dad-1=a5, bc=cb, dbd-1=a4b, dcd-1=c-1 >

Subgroups: 304 in 170 conjugacy classes, 96 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C42, C42, C42, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C2xQ8, C4xC8, C8:C4, D4:C4, D4:C4, Q8:C4, Q8:C4, C4:C8, C4:C8, C4.Q8, C4.Q8, C2.D8, C2xC4:C4, C4xD4, C4xD4, C4xQ8, C4xQ8, C4xQ8, C22:Q8, C42.C2, C4:Q8, C4:Q8, C4:Q8, C2xSD16, C4xSD16, SD16:C4, C8:4Q8, D4:Q8, D4:2Q8, C4.Q16, Q8.Q8, C8:2Q8, C8:Q8, D4:3Q8, Q82, SD16:Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2xD4, C2xQ8, C24, C8.C22, C22xD4, C22xQ8, 2- 1+4, D4xQ8, C2xC8.C22, D4oD8, SD16:Q8

Character table of SD16:Q8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P4Q8A8B8C8D8E8F
 size 11114422224444444888888444488
ρ111111111111111111111111111111    trivial
ρ21111111111-11-1-11-111-1-1-1-111111-1-1    linear of order 2
ρ311111111111-111-111-11-1-111-1-1-1-1-1-1    linear of order 2
ρ41111111111-1-1-1-1-1-11-1-111-11-1-1-1-111    linear of order 2
ρ51111-1-111111-111-111-1-1-1-1-1-1111111    linear of order 2
ρ61111-1-11111-1-1-1-1-1-11-11111-11111-1-1    linear of order 2
ρ71111-1-1111111111111-111-1-1-1-1-1-1-1-1    linear of order 2
ρ81111-1-11111-11-1-11-1111-1-11-1-1-1-1-111    linear of order 2
ρ91111-1-11-11-1111-11-1-1-1-1-1111-1-111-11    linear of order 2
ρ101111-1-11-11-1-11-1111-1-111-1-11-1-1111-1    linear of order 2
ρ111111-1-11-11-11-11-1-1-1-11-11-11111-1-11-1    linear of order 2
ρ121111-1-11-11-1-1-1-11-11-111-11-1111-1-1-11    linear of order 2
ρ131111111-11-11-11-1-1-1-1111-1-1-1-1-111-11    linear of order 2
ρ141111111-11-1-1-1-11-11-11-1-111-1-1-1111-1    linear of order 2
ρ151111111-11-1111-11-1-1-11-11-1-111-1-11-1    linear of order 2
ρ161111111-11-1-11-1111-1-1-11-11-111-1-1-11    linear of order 2
ρ17222200-22-22-20220-2-2000000000000    orthogonal lifted from D4
ρ18222200-2-2-2-2-202-2022000000000000    orthogonal lifted from D4
ρ19222200-2-2-2-220-220-22000000000000    orthogonal lifted from D4
ρ20222200-22-2220-2-202-2000000000000    orthogonal lifted from D4
ρ212-22-2-22-20200200-200000000-220000    symplectic lifted from Q8, Schur index 2
ρ222-22-22-2-20200200-2000000002-20000    symplectic lifted from Q8, Schur index 2
ρ232-22-2-22-20200-2002000000002-20000    symplectic lifted from Q8, Schur index 2
ρ242-22-22-2-20200-200200000000-220000    symplectic lifted from Q8, Schur index 2
ρ2544-4-4000000000000000000000-222200    orthogonal lifted from D4oD8
ρ2644-4-400000000000000000000022-2200    orthogonal lifted from D4oD8
ρ274-4-44000-4040000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-44-40040-400000000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ294-4-4400040-40000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of SD16:Q8
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 19)(2 22)(3 17)(4 20)(5 23)(6 18)(7 21)(8 24)(9 57)(10 60)(11 63)(12 58)(13 61)(14 64)(15 59)(16 62)(25 53)(26 56)(27 51)(28 54)(29 49)(30 52)(31 55)(32 50)(33 43)(34 46)(35 41)(36 44)(37 47)(38 42)(39 45)(40 48)
(1 31 23 51)(2 32 24 52)(3 25 17 53)(4 26 18 54)(5 27 19 55)(6 28 20 56)(7 29 21 49)(8 30 22 50)(9 36 61 48)(10 37 62 41)(11 38 63 42)(12 39 64 43)(13 40 57 44)(14 33 58 45)(15 34 59 46)(16 35 60 47)
(1 38 23 42)(2 35 24 47)(3 40 17 44)(4 37 18 41)(5 34 19 46)(6 39 20 43)(7 36 21 48)(8 33 22 45)(9 49 61 29)(10 54 62 26)(11 51 63 31)(12 56 64 28)(13 53 57 25)(14 50 58 30)(15 55 59 27)(16 52 60 32)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,57)(10,60)(11,63)(12,58)(13,61)(14,64)(15,59)(16,62)(25,53)(26,56)(27,51)(28,54)(29,49)(30,52)(31,55)(32,50)(33,43)(34,46)(35,41)(36,44)(37,47)(38,42)(39,45)(40,48), (1,31,23,51)(2,32,24,52)(3,25,17,53)(4,26,18,54)(5,27,19,55)(6,28,20,56)(7,29,21,49)(8,30,22,50)(9,36,61,48)(10,37,62,41)(11,38,63,42)(12,39,64,43)(13,40,57,44)(14,33,58,45)(15,34,59,46)(16,35,60,47), (1,38,23,42)(2,35,24,47)(3,40,17,44)(4,37,18,41)(5,34,19,46)(6,39,20,43)(7,36,21,48)(8,33,22,45)(9,49,61,29)(10,54,62,26)(11,51,63,31)(12,56,64,28)(13,53,57,25)(14,50,58,30)(15,55,59,27)(16,52,60,32)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,19)(2,22)(3,17)(4,20)(5,23)(6,18)(7,21)(8,24)(9,57)(10,60)(11,63)(12,58)(13,61)(14,64)(15,59)(16,62)(25,53)(26,56)(27,51)(28,54)(29,49)(30,52)(31,55)(32,50)(33,43)(34,46)(35,41)(36,44)(37,47)(38,42)(39,45)(40,48), (1,31,23,51)(2,32,24,52)(3,25,17,53)(4,26,18,54)(5,27,19,55)(6,28,20,56)(7,29,21,49)(8,30,22,50)(9,36,61,48)(10,37,62,41)(11,38,63,42)(12,39,64,43)(13,40,57,44)(14,33,58,45)(15,34,59,46)(16,35,60,47), (1,38,23,42)(2,35,24,47)(3,40,17,44)(4,37,18,41)(5,34,19,46)(6,39,20,43)(7,36,21,48)(8,33,22,45)(9,49,61,29)(10,54,62,26)(11,51,63,31)(12,56,64,28)(13,53,57,25)(14,50,58,30)(15,55,59,27)(16,52,60,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,19),(2,22),(3,17),(4,20),(5,23),(6,18),(7,21),(8,24),(9,57),(10,60),(11,63),(12,58),(13,61),(14,64),(15,59),(16,62),(25,53),(26,56),(27,51),(28,54),(29,49),(30,52),(31,55),(32,50),(33,43),(34,46),(35,41),(36,44),(37,47),(38,42),(39,45),(40,48)], [(1,31,23,51),(2,32,24,52),(3,25,17,53),(4,26,18,54),(5,27,19,55),(6,28,20,56),(7,29,21,49),(8,30,22,50),(9,36,61,48),(10,37,62,41),(11,38,63,42),(12,39,64,43),(13,40,57,44),(14,33,58,45),(15,34,59,46),(16,35,60,47)], [(1,38,23,42),(2,35,24,47),(3,40,17,44),(4,37,18,41),(5,34,19,46),(6,39,20,43),(7,36,21,48),(8,33,22,45),(9,49,61,29),(10,54,62,26),(11,51,63,31),(12,56,64,28),(13,53,57,25),(14,50,58,30),(15,55,59,27),(16,52,60,32)]])

Matrix representation of SD16:Q8 in GL6(F17)

100000
010000
0051200
005500
0000125
00001212
,
100000
010000
001000
0001600
0000160
000001
,
0160000
100000
0013000
0001300
000040
000004
,
0130000
1300000
000010
000001
0016000
0001600

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,5,0,0,0,0,12,5,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;

SD16:Q8 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\rtimes Q_8
% in TeX

G:=Group("SD16:Q8");
// GroupNames label

G:=SmallGroup(128,2117);
// by ID

G=gap.SmallGroup(128,2117);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,723,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=1,d^2=c^2,b*a*b=a^3,a*c=c*a,d*a*d^-1=a^5,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Character table of SD16:Q8 in TeX

׿
x
:
Z
F
o
wr
Q
<