Copied to
clipboard

G = D12:3D4order 192 = 26·3

3rd semidirect product of D12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:3D4, Dic3:2D8, (C2xD24):5C2, C3:1(C4:D8), C4.88(S3xD4), C2.11(S3xD8), C6.25(C2xD8), (C2xC8).12D6, D4:C4:8S3, C12:3D4:2C2, Dic3:C8:7C2, C4:C4.140D6, (C2xD4).31D6, C6.D8:8C2, Dic3:5D4:3C2, C4.3(C4oD12), C12.112(C2xD4), C12.11(C4oD4), C6.19(C4:D4), C2.13(Q8:3D6), C6.58(C8:C22), (C2xC24).12C22, (C2xDic3).24D4, (C6xD4).47C22, C22.183(S3xD4), C2.22(Dic3:D4), (C2xC12).226C23, (C2xD12).54C22, (C4xDic3).13C22, (C2xD4:S3):6C2, (C3xD4:C4):8C2, (C2xC6).239(C2xD4), (C2xC3:C8).24C22, (C3xC4:C4).27C22, (C2xC4).333(C22xS3), SmallGroup(192,345)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12:3D4
C1C3C6C2xC6C2xC12C2xD12Dic3:5D4 — D12:3D4
C3C6C2xC12 — D12:3D4
C1C22C2xC4D4:C4

Generators and relations for D12:3D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=dad=a-1, cac-1=a5, cbc-1=a4b, dbd=a7b, dcd=c-1 >

Subgroups: 536 in 140 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, Dic3, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C2xC8, D8, C22xC4, C2xD4, C2xD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C22xS3, C22xC6, D4:C4, D4:C4, C4:C8, C4xD4, C4:1D4, C2xD8, D24, C2xC3:C8, C4xDic3, D6:C4, D4:S3, C3xC4:C4, C2xC24, S3xC2xC4, C2xD12, C2xC3:D4, C6xD4, C4:D8, C6.D8, Dic3:C8, C3xD4:C4, Dic3:5D4, C2xD24, C2xD4:S3, C12:3D4, D12:3D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C4oD4, C22xS3, C4:D4, C2xD8, C8:C22, C4oD12, S3xD4, C4:D8, Dic3:D4, S3xD8, Q8:3D6, D12:3D4

Smallest permutation representation of D12:3D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 72)(8 71)(9 70)(10 69)(11 68)(12 67)(13 87)(14 86)(15 85)(16 96)(17 95)(18 94)(19 93)(20 92)(21 91)(22 90)(23 89)(24 88)(25 75)(26 74)(27 73)(28 84)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 52)(38 51)(39 50)(40 49)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)
(1 80 19 53)(2 73 20 58)(3 78 21 51)(4 83 22 56)(5 76 23 49)(6 81 24 54)(7 74 13 59)(8 79 14 52)(9 84 15 57)(10 77 16 50)(11 82 17 55)(12 75 18 60)(25 90 41 63)(26 95 42 68)(27 88 43 61)(28 93 44 66)(29 86 45 71)(30 91 46 64)(31 96 47 69)(32 89 48 62)(33 94 37 67)(34 87 38 72)(35 92 39 65)(36 85 40 70)
(2 12)(3 11)(4 10)(5 9)(6 8)(14 24)(15 23)(16 22)(17 21)(18 20)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 78)(56 77)(57 76)(58 75)(59 74)(60 73)(61 64)(62 63)(65 72)(66 71)(67 70)(68 69)(85 94)(86 93)(87 92)(88 91)(89 90)(95 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,87)(14,86)(15,85)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,52)(38,51)(39,50)(40,49)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53), (1,80,19,53)(2,73,20,58)(3,78,21,51)(4,83,22,56)(5,76,23,49)(6,81,24,54)(7,74,13,59)(8,79,14,52)(9,84,15,57)(10,77,16,50)(11,82,17,55)(12,75,18,60)(25,90,41,63)(26,95,42,68)(27,88,43,61)(28,93,44,66)(29,86,45,71)(30,91,46,64)(31,96,47,69)(32,89,48,62)(33,94,37,67)(34,87,38,72)(35,92,39,65)(36,85,40,70), (2,12)(3,11)(4,10)(5,9)(6,8)(14,24)(15,23)(16,22)(17,21)(18,20)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,87)(14,86)(15,85)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,52)(38,51)(39,50)(40,49)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53), (1,80,19,53)(2,73,20,58)(3,78,21,51)(4,83,22,56)(5,76,23,49)(6,81,24,54)(7,74,13,59)(8,79,14,52)(9,84,15,57)(10,77,16,50)(11,82,17,55)(12,75,18,60)(25,90,41,63)(26,95,42,68)(27,88,43,61)(28,93,44,66)(29,86,45,71)(30,91,46,64)(31,96,47,69)(32,89,48,62)(33,94,37,67)(34,87,38,72)(35,92,39,65)(36,85,40,70), (2,12)(3,11)(4,10)(5,9)(6,8)(14,24)(15,23)(16,22)(17,21)(18,20)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,72),(8,71),(9,70),(10,69),(11,68),(12,67),(13,87),(14,86),(15,85),(16,96),(17,95),(18,94),(19,93),(20,92),(21,91),(22,90),(23,89),(24,88),(25,75),(26,74),(27,73),(28,84),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,52),(38,51),(39,50),(40,49),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53)], [(1,80,19,53),(2,73,20,58),(3,78,21,51),(4,83,22,56),(5,76,23,49),(6,81,24,54),(7,74,13,59),(8,79,14,52),(9,84,15,57),(10,77,16,50),(11,82,17,55),(12,75,18,60),(25,90,41,63),(26,95,42,68),(27,88,43,61),(28,93,44,66),(29,86,45,71),(30,91,46,64),(31,96,47,69),(32,89,48,62),(33,94,37,67),(34,87,38,72),(35,92,39,65),(36,85,40,70)], [(2,12),(3,11),(4,10),(5,9),(6,8),(14,24),(15,23),(16,22),(17,21),(18,20),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,78),(56,77),(57,76),(58,75),(59,74),(60,73),(61,64),(62,63),(65,72),(66,71),(67,70),(68,69),(85,94),(86,93),(87,92),(88,91),(89,90),(95,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222344444446666688881212121224242424
size111181212242224466122228844121244884444

33 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6D8C4oD4C4oD12C8:C22S3xD4S3xD4S3xD8Q8:3D6
kernelD12:3D4C6.D8Dic3:C8C3xD4:C4Dic3:5D4C2xD24C2xD4:S3C12:3D4D4:C4D12C2xDic3C4:C4C2xC8C2xD4Dic3C12C4C6C4C22C2C2
# reps1111111112211142411122

Matrix representation of D12:3D4 in GL6(F73)

72720000
100000
001000
000100
000001
0000720
,
72720000
010000
001000
000100
00001616
00001657
,
7200000
110000
0007200
001000
0000720
0000072
,
100000
72720000
001000
0007200
000010
0000072

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[72,0,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,16,57],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

D12:3D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_3D_4
% in TeX

G:=Group("D12:3D4");
// GroupNames label

G:=SmallGroup(192,345);
// by ID

G=gap.SmallGroup(192,345);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^4*b,d*b*d=a^7*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<