Copied to
clipboard

G = D123D4order 192 = 26·3

3rd semidirect product of D12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D123D4, Dic32D8, (C2×D24)⋊5C2, C31(C4⋊D8), C4.88(S3×D4), C2.11(S3×D8), C6.25(C2×D8), (C2×C8).12D6, D4⋊C48S3, C123D42C2, Dic3⋊C87C2, C4⋊C4.140D6, (C2×D4).31D6, C6.D88C2, Dic35D43C2, C4.3(C4○D12), C12.112(C2×D4), C12.11(C4○D4), C6.19(C4⋊D4), C2.13(Q83D6), C6.58(C8⋊C22), (C2×C24).12C22, (C2×Dic3).24D4, (C6×D4).47C22, C22.183(S3×D4), C2.22(Dic3⋊D4), (C2×C12).226C23, (C2×D12).54C22, (C4×Dic3).13C22, (C2×D4⋊S3)⋊6C2, (C3×D4⋊C4)⋊8C2, (C2×C6).239(C2×D4), (C2×C3⋊C8).24C22, (C3×C4⋊C4).27C22, (C2×C4).333(C22×S3), SmallGroup(192,345)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D123D4
C1C3C6C2×C6C2×C12C2×D12Dic35D4 — D123D4
C3C6C2×C12 — D123D4
C1C22C2×C4D4⋊C4

Generators and relations for D123D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=dad=a-1, cac-1=a5, cbc-1=a4b, dbd=a7b, dcd=c-1 >

Subgroups: 536 in 140 conjugacy classes, 41 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, D4⋊C4, D4⋊C4, C4⋊C8, C4×D4, C41D4, C2×D8, D24, C2×C3⋊C8, C4×Dic3, D6⋊C4, D4⋊S3, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C2×C3⋊D4, C6×D4, C4⋊D8, C6.D8, Dic3⋊C8, C3×D4⋊C4, Dic35D4, C2×D24, C2×D4⋊S3, C123D4, D123D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C4○D4, C22×S3, C4⋊D4, C2×D8, C8⋊C22, C4○D12, S3×D4, C4⋊D8, Dic3⋊D4, S3×D8, Q83D6, D123D4

Smallest permutation representation of D123D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 72)(8 71)(9 70)(10 69)(11 68)(12 67)(13 87)(14 86)(15 85)(16 96)(17 95)(18 94)(19 93)(20 92)(21 91)(22 90)(23 89)(24 88)(25 75)(26 74)(27 73)(28 84)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 52)(38 51)(39 50)(40 49)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)
(1 80 19 53)(2 73 20 58)(3 78 21 51)(4 83 22 56)(5 76 23 49)(6 81 24 54)(7 74 13 59)(8 79 14 52)(9 84 15 57)(10 77 16 50)(11 82 17 55)(12 75 18 60)(25 90 41 63)(26 95 42 68)(27 88 43 61)(28 93 44 66)(29 86 45 71)(30 91 46 64)(31 96 47 69)(32 89 48 62)(33 94 37 67)(34 87 38 72)(35 92 39 65)(36 85 40 70)
(2 12)(3 11)(4 10)(5 9)(6 8)(14 24)(15 23)(16 22)(17 21)(18 20)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 42)(32 41)(33 40)(34 39)(35 38)(36 37)(49 84)(50 83)(51 82)(52 81)(53 80)(54 79)(55 78)(56 77)(57 76)(58 75)(59 74)(60 73)(61 64)(62 63)(65 72)(66 71)(67 70)(68 69)(85 94)(86 93)(87 92)(88 91)(89 90)(95 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,87)(14,86)(15,85)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,52)(38,51)(39,50)(40,49)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53), (1,80,19,53)(2,73,20,58)(3,78,21,51)(4,83,22,56)(5,76,23,49)(6,81,24,54)(7,74,13,59)(8,79,14,52)(9,84,15,57)(10,77,16,50)(11,82,17,55)(12,75,18,60)(25,90,41,63)(26,95,42,68)(27,88,43,61)(28,93,44,66)(29,86,45,71)(30,91,46,64)(31,96,47,69)(32,89,48,62)(33,94,37,67)(34,87,38,72)(35,92,39,65)(36,85,40,70), (2,12)(3,11)(4,10)(5,9)(6,8)(14,24)(15,23)(16,22)(17,21)(18,20)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,87)(14,86)(15,85)(16,96)(17,95)(18,94)(19,93)(20,92)(21,91)(22,90)(23,89)(24,88)(25,75)(26,74)(27,73)(28,84)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,52)(38,51)(39,50)(40,49)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53), (1,80,19,53)(2,73,20,58)(3,78,21,51)(4,83,22,56)(5,76,23,49)(6,81,24,54)(7,74,13,59)(8,79,14,52)(9,84,15,57)(10,77,16,50)(11,82,17,55)(12,75,18,60)(25,90,41,63)(26,95,42,68)(27,88,43,61)(28,93,44,66)(29,86,45,71)(30,91,46,64)(31,96,47,69)(32,89,48,62)(33,94,37,67)(34,87,38,72)(35,92,39,65)(36,85,40,70), (2,12)(3,11)(4,10)(5,9)(6,8)(14,24)(15,23)(16,22)(17,21)(18,20)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,42)(32,41)(33,40)(34,39)(35,38)(36,37)(49,84)(50,83)(51,82)(52,81)(53,80)(54,79)(55,78)(56,77)(57,76)(58,75)(59,74)(60,73)(61,64)(62,63)(65,72)(66,71)(67,70)(68,69)(85,94)(86,93)(87,92)(88,91)(89,90)(95,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,72),(8,71),(9,70),(10,69),(11,68),(12,67),(13,87),(14,86),(15,85),(16,96),(17,95),(18,94),(19,93),(20,92),(21,91),(22,90),(23,89),(24,88),(25,75),(26,74),(27,73),(28,84),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,52),(38,51),(39,50),(40,49),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53)], [(1,80,19,53),(2,73,20,58),(3,78,21,51),(4,83,22,56),(5,76,23,49),(6,81,24,54),(7,74,13,59),(8,79,14,52),(9,84,15,57),(10,77,16,50),(11,82,17,55),(12,75,18,60),(25,90,41,63),(26,95,42,68),(27,88,43,61),(28,93,44,66),(29,86,45,71),(30,91,46,64),(31,96,47,69),(32,89,48,62),(33,94,37,67),(34,87,38,72),(35,92,39,65),(36,85,40,70)], [(2,12),(3,11),(4,10),(5,9),(6,8),(14,24),(15,23),(16,22),(17,21),(18,20),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,42),(32,41),(33,40),(34,39),(35,38),(36,37),(49,84),(50,83),(51,82),(52,81),(53,80),(54,79),(55,78),(56,77),(57,76),(58,75),(59,74),(60,73),(61,64),(62,63),(65,72),(66,71),(67,70),(68,69),(85,94),(86,93),(87,92),(88,91),(89,90),(95,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222344444446666688881212121224242424
size111181212242224466122228844121244884444

33 irreducible representations

dim1111111122222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6D8C4○D4C4○D12C8⋊C22S3×D4S3×D4S3×D8Q83D6
kernelD123D4C6.D8Dic3⋊C8C3×D4⋊C4Dic35D4C2×D24C2×D4⋊S3C123D4D4⋊C4D12C2×Dic3C4⋊C4C2×C8C2×D4Dic3C12C4C6C4C22C2C2
# reps1111111112211142411122

Matrix representation of D123D4 in GL6(𝔽73)

72720000
100000
001000
000100
000001
0000720
,
72720000
010000
001000
000100
00001616
00001657
,
7200000
110000
0007200
001000
0000720
0000072
,
100000
72720000
001000
0007200
000010
0000072

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[72,0,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,16,57],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

D123D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_3D_4
% in TeX

G:=Group("D12:3D4");
// GroupNames label

G:=SmallGroup(192,345);
// by ID

G=gap.SmallGroup(192,345);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,590,219,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^4*b,d*b*d=a^7*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽