Copied to
clipboard

G = C42.201C23order 128 = 27

62nd non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.201C23, Q8⋊C810C2, C4⋊C4.293D4, C42Q161C2, (C2×D4).25D4, (C2×Q8).49D4, Q8⋊Q830C2, C4.58(C4○D8), C4⋊C8.10C22, (C4×C8).22C22, C4.D8.4C2, C4.4D8.2C2, C4⋊Q8.21C22, C4.62(C8⋊C22), (C4×Q8).31C22, C2.19(D4⋊D4), C41D4.18C22, C4.63(C8.C22), C2.13(D4.9D4), C2.19(D4.7D4), C22.167C22≀C2, C22.53C24.2C2, (C2×C4).958(C2×D4), SmallGroup(128,372)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C42.201C23
C1C2C22C2×C4C42C4×Q8C22.53C24 — C42.201C23
C1C22C42 — C42.201C23
C1C22C42 — C42.201C23
C1C22C22C42 — C42.201C23

Generators and relations for C42.201C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=b2, e2=a2, ab=ba, cac-1=dad=a-1, eae-1=ab2, cbc-1=dbd=ebe-1=b-1, dcd=ac, ece-1=bc, de=ed >

Subgroups: 256 in 106 conjugacy classes, 34 normal (32 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×6], C22, C22 [×6], C8 [×3], C2×C4 [×3], C2×C4 [×7], D4 [×6], Q8 [×6], C23 [×2], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×4], C2×C8 [×3], Q16 [×2], C22×C4 [×2], C2×D4 [×2], C2×D4 [×2], C2×Q8 [×2], C2×Q8, C4×C8, D4⋊C4 [×2], Q8⋊C4 [×2], C4⋊C8 [×2], C4.Q8, C4×D4 [×2], C4×Q8 [×2], C22.D4 [×2], C4.4D4 [×2], C41D4, C4⋊Q8, C2×Q16, Q8⋊C8 [×2], C4.D8, C42Q16, Q8⋊Q8, C4.4D8, C22.53C24, C42.201C23
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, C2×D4 [×3], C22≀C2, C4○D8 [×2], C8⋊C22, C8.C22, D4⋊D4, D4.7D4, D4.9D4, C42.201C23

Character table of C42.201C23

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D8E8F8G8H
 size 111188222244444881644448888
ρ111111111111111111111111111    trivial
ρ211111111111111111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ31111-1-111111-11-111-1-11111-1-111    linear of order 2
ρ41111-1-111111-11-111-11-1-1-1-111-1-1    linear of order 2
ρ51111-1-11111-11-111-11-1111111-1-1    linear of order 2
ρ61111-1-11111-11-111-111-1-1-1-1-1-111    linear of order 2
ρ71111111111-1-1-1-11-1-111111-1-1-1-1    linear of order 2
ρ81111111111-1-1-1-11-1-1-1-1-1-1-11111    linear of order 2
ρ92222-22-2-2-2-20000200000000000    orthogonal lifted from D4
ρ10222200-2-2220-20-2-202000000000    orthogonal lifted from D4
ρ1122220022-2-2-20-20-220000000000    orthogonal lifted from D4
ρ1222222-2-2-2-2-20000200000000000    orthogonal lifted from D4
ρ13222200-2-2220202-20-2000000000    orthogonal lifted from D4
ρ1422220022-2-22020-2-20000000000    orthogonal lifted from D4
ρ152-2-220000-2202i0-2i00002-2-22--2-200    complex lifted from C4○D8
ρ162-2-220000-2202i0-2i0000-222-2-2--200    complex lifted from C4○D8
ρ1722-2-2002-200-2i02i00000-2--2-2--200-22    complex lifted from C4○D8
ρ1822-2-2002-2002i0-2i00000-2--2-2--2002-2    complex lifted from C4○D8
ρ192-2-220000-220-2i02i00002-2-22-2--200    complex lifted from C4○D8
ρ202-2-220000-220-2i02i0000-222-2--2-200    complex lifted from C4○D8
ρ2122-2-2002-2002i0-2i00000--2-2--2-200-22    complex lifted from C4○D8
ρ2222-2-2002-200-2i02i00000--2-2--2-2002-2    complex lifted from C4○D8
ρ234-4-4400004-40000000000000000    orthogonal lifted from C8⋊C22
ρ2444-4-400-44000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-44-4000000000000002i2i-2i-2i0000    complex lifted from D4.9D4
ρ264-44-400000000000000-2i-2i2i2i0000    complex lifted from D4.9D4

Smallest permutation representation of C42.201C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 18 15 5)(2 19 16 6)(3 20 13 7)(4 17 14 8)(9 62 56 59)(10 63 53 60)(11 64 54 57)(12 61 55 58)(21 31 33 26)(22 32 34 27)(23 29 35 28)(24 30 36 25)(37 48 49 44)(38 45 50 41)(39 46 51 42)(40 47 52 43)
(1 45 15 41)(2 48 16 44)(3 47 13 43)(4 46 14 42)(5 50 18 38)(6 49 19 37)(7 52 20 40)(8 51 17 39)(9 36 56 24)(10 35 53 23)(11 34 54 22)(12 33 55 21)(25 62 30 59)(26 61 31 58)(27 64 32 57)(28 63 29 60)
(2 4)(5 18)(6 17)(7 20)(8 19)(9 53)(10 56)(11 55)(12 54)(14 16)(21 33)(22 36)(23 35)(24 34)(25 27)(30 32)(37 50)(38 49)(39 52)(40 51)(41 44)(42 43)(45 48)(46 47)(57 58)(59 60)(61 64)(62 63)
(1 29 3 31)(2 25 4 27)(5 35 7 33)(6 24 8 22)(9 46 11 48)(10 43 12 41)(13 26 15 28)(14 32 16 30)(17 34 19 36)(18 23 20 21)(37 62 39 64)(38 60 40 58)(42 54 44 56)(45 53 47 55)(49 59 51 57)(50 63 52 61)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (1,45,15,41)(2,48,16,44)(3,47,13,43)(4,46,14,42)(5,50,18,38)(6,49,19,37)(7,52,20,40)(8,51,17,39)(9,36,56,24)(10,35,53,23)(11,34,54,22)(12,33,55,21)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,50)(38,49)(39,52)(40,51)(41,44)(42,43)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,43,12,41)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,62,39,64)(38,60,40,58)(42,54,44,56)(45,53,47,55)(49,59,51,57)(50,63,52,61)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,18,15,5)(2,19,16,6)(3,20,13,7)(4,17,14,8)(9,62,56,59)(10,63,53,60)(11,64,54,57)(12,61,55,58)(21,31,33,26)(22,32,34,27)(23,29,35,28)(24,30,36,25)(37,48,49,44)(38,45,50,41)(39,46,51,42)(40,47,52,43), (1,45,15,41)(2,48,16,44)(3,47,13,43)(4,46,14,42)(5,50,18,38)(6,49,19,37)(7,52,20,40)(8,51,17,39)(9,36,56,24)(10,35,53,23)(11,34,54,22)(12,33,55,21)(25,62,30,59)(26,61,31,58)(27,64,32,57)(28,63,29,60), (2,4)(5,18)(6,17)(7,20)(8,19)(9,53)(10,56)(11,55)(12,54)(14,16)(21,33)(22,36)(23,35)(24,34)(25,27)(30,32)(37,50)(38,49)(39,52)(40,51)(41,44)(42,43)(45,48)(46,47)(57,58)(59,60)(61,64)(62,63), (1,29,3,31)(2,25,4,27)(5,35,7,33)(6,24,8,22)(9,46,11,48)(10,43,12,41)(13,26,15,28)(14,32,16,30)(17,34,19,36)(18,23,20,21)(37,62,39,64)(38,60,40,58)(42,54,44,56)(45,53,47,55)(49,59,51,57)(50,63,52,61) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,18,15,5),(2,19,16,6),(3,20,13,7),(4,17,14,8),(9,62,56,59),(10,63,53,60),(11,64,54,57),(12,61,55,58),(21,31,33,26),(22,32,34,27),(23,29,35,28),(24,30,36,25),(37,48,49,44),(38,45,50,41),(39,46,51,42),(40,47,52,43)], [(1,45,15,41),(2,48,16,44),(3,47,13,43),(4,46,14,42),(5,50,18,38),(6,49,19,37),(7,52,20,40),(8,51,17,39),(9,36,56,24),(10,35,53,23),(11,34,54,22),(12,33,55,21),(25,62,30,59),(26,61,31,58),(27,64,32,57),(28,63,29,60)], [(2,4),(5,18),(6,17),(7,20),(8,19),(9,53),(10,56),(11,55),(12,54),(14,16),(21,33),(22,36),(23,35),(24,34),(25,27),(30,32),(37,50),(38,49),(39,52),(40,51),(41,44),(42,43),(45,48),(46,47),(57,58),(59,60),(61,64),(62,63)], [(1,29,3,31),(2,25,4,27),(5,35,7,33),(6,24,8,22),(9,46,11,48),(10,43,12,41),(13,26,15,28),(14,32,16,30),(17,34,19,36),(18,23,20,21),(37,62,39,64),(38,60,40,58),(42,54,44,56),(45,53,47,55),(49,59,51,57),(50,63,52,61)])

Matrix representation of C42.201C23 in GL4(𝔽17) generated by

0100
16000
00115
00116
,
1000
0100
00115
00116
,
31400
141400
00010
0050
,
1000
01600
0010
00116
,
13000
01300
00130
00134
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,1,1,0,0,15,16],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,15,16],[3,14,0,0,14,14,0,0,0,0,0,5,0,0,10,0],[1,0,0,0,0,16,0,0,0,0,1,1,0,0,0,16],[13,0,0,0,0,13,0,0,0,0,13,13,0,0,0,4] >;

C42.201C23 in GAP, Magma, Sage, TeX

C_4^2._{201}C_2^3
% in TeX

G:=Group("C4^2.201C2^3");
// GroupNames label

G:=SmallGroup(128,372);
// by ID

G=gap.SmallGroup(128,372);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,184,1123,570,521,136,2804,1411,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=b^2,e^2=a^2,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=e*b*e^-1=b^-1,d*c*d=a*c,e*c*e^-1=b*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.201C23 in TeX

׿
×
𝔽