metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×D4)⋊43D6, (C2×C12)⋊15D4, (C2×Q8)⋊35D6, D6⋊6(C4○D4), (C22×C4)⋊32D6, C23⋊2D6⋊34C2, D6⋊3D4⋊46C2, D6⋊3Q8⋊47C2, C12.265(C2×D4), (C6×D4)⋊47C22, (C6×Q8)⋊39C22, (C2×C6).314C24, C4⋊Dic3⋊80C22, C6.164(C22×D4), (C2×C12).651C23, Dic3⋊C4⋊76C22, D6⋊C4.159C22, (C22×C12)⋊42C22, C3⋊8(C22.19C24), (C4×Dic3)⋊60C22, C23.23D6⋊34C2, C6.D4⋊65C22, C23.26D6⋊38C2, C23.147(C22×S3), (C22×C6).240C23, C22.323(S3×C23), (S3×C23).115C22, (C22×S3).243C23, (C2×Dic3).293C23, (C22×Dic3).236C22, (C6×C4○D4)⋊6C2, (S3×C22×C4)⋊7C2, (C2×C4○D4)⋊10S3, (C4×C3⋊D4)⋊60C2, (C2×C6).80(C2×D4), (C2×C4)⋊14(C3⋊D4), C6.215(C2×C4○D4), C2.103(S3×C4○D4), C4.100(C2×C3⋊D4), (S3×C2×C4).263C22, C22.23(C2×C3⋊D4), C2.37(C22×C3⋊D4), (C2×C4).639(C22×S3), (C2×C3⋊D4).140C22, SmallGroup(192,1387)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 808 in 330 conjugacy classes, 115 normal (25 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×4], C4 [×8], C22, C22 [×2], C22 [×24], S3 [×4], C6, C6 [×2], C6 [×4], C2×C4 [×2], C2×C4 [×6], C2×C4 [×20], D4 [×14], Q8 [×2], C23, C23 [×2], C23 [×8], Dic3 [×6], C12 [×4], C12 [×2], D6 [×4], D6 [×12], C2×C6, C2×C6 [×2], C2×C6 [×8], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×6], C22×C4, C22×C4 [×2], C22×C4 [×9], C2×D4, C2×D4 [×2], C2×D4 [×4], C2×Q8, C4○D4 [×4], C24, C4×S3 [×8], C2×Dic3 [×6], C2×Dic3 [×2], C3⋊D4 [×8], C2×C12 [×2], C2×C12 [×6], C2×C12 [×4], C3×D4 [×6], C3×Q8 [×2], C22×S3 [×2], C22×S3 [×6], C22×C6, C22×C6 [×2], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×2], C23×C4, C2×C4○D4, C4×Dic3 [×2], Dic3⋊C4 [×4], C4⋊Dic3 [×2], D6⋊C4 [×4], C6.D4 [×6], S3×C2×C4 [×4], S3×C2×C4 [×4], C22×Dic3, C2×C3⋊D4 [×4], C22×C12, C22×C12 [×2], C6×D4, C6×D4 [×2], C6×Q8, C3×C4○D4 [×4], S3×C23, C22.19C24, C23.26D6, C4×C3⋊D4 [×4], C23.23D6 [×2], C23⋊2D6 [×2], D6⋊3D4 [×2], D6⋊3Q8 [×2], S3×C22×C4, C6×C4○D4, (C2×D4)⋊43D6
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×4], C24, C3⋊D4 [×4], C22×S3 [×7], C22×D4, C2×C4○D4 [×2], C2×C3⋊D4 [×6], S3×C23, C22.19C24, S3×C4○D4 [×2], C22×C3⋊D4, (C2×D4)⋊43D6
Generators and relations
G = < a,b,c,d,e | a2=b4=c2=d6=e2=1, ab=ba, ece=ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b2c, ede=d-1 >
(1 16)(2 17)(3 18)(4 7)(5 8)(6 9)(10 15)(11 13)(12 14)(19 24)(20 22)(21 23)(25 33)(26 34)(27 35)(28 36)(29 31)(30 32)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 13 21 5)(2 14 19 6)(3 15 20 4)(7 18 10 22)(8 16 11 23)(9 17 12 24)(25 43 28 46)(26 44 29 47)(27 45 30 48)(31 41 34 38)(32 42 35 39)(33 37 36 40)
(1 29)(2 27)(3 25)(4 43)(5 47)(6 45)(7 37)(8 41)(9 39)(10 40)(11 38)(12 42)(13 44)(14 48)(15 46)(16 31)(17 35)(18 33)(19 30)(20 28)(21 26)(22 36)(23 34)(24 32)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 21)(2 20)(3 19)(4 14)(5 13)(6 15)(7 12)(8 11)(9 10)(16 23)(17 22)(18 24)(25 32)(26 31)(27 36)(28 35)(29 34)(30 33)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)
G:=sub<Sym(48)| (1,16)(2,17)(3,18)(4,7)(5,8)(6,9)(10,15)(11,13)(12,14)(19,24)(20,22)(21,23)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,13,21,5)(2,14,19,6)(3,15,20,4)(7,18,10,22)(8,16,11,23)(9,17,12,24)(25,43,28,46)(26,44,29,47)(27,45,30,48)(31,41,34,38)(32,42,35,39)(33,37,36,40), (1,29)(2,27)(3,25)(4,43)(5,47)(6,45)(7,37)(8,41)(9,39)(10,40)(11,38)(12,42)(13,44)(14,48)(15,46)(16,31)(17,35)(18,33)(19,30)(20,28)(21,26)(22,36)(23,34)(24,32), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,14)(5,13)(6,15)(7,12)(8,11)(9,10)(16,23)(17,22)(18,24)(25,32)(26,31)(27,36)(28,35)(29,34)(30,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;
G:=Group( (1,16)(2,17)(3,18)(4,7)(5,8)(6,9)(10,15)(11,13)(12,14)(19,24)(20,22)(21,23)(25,33)(26,34)(27,35)(28,36)(29,31)(30,32)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,13,21,5)(2,14,19,6)(3,15,20,4)(7,18,10,22)(8,16,11,23)(9,17,12,24)(25,43,28,46)(26,44,29,47)(27,45,30,48)(31,41,34,38)(32,42,35,39)(33,37,36,40), (1,29)(2,27)(3,25)(4,43)(5,47)(6,45)(7,37)(8,41)(9,39)(10,40)(11,38)(12,42)(13,44)(14,48)(15,46)(16,31)(17,35)(18,33)(19,30)(20,28)(21,26)(22,36)(23,34)(24,32), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,21)(2,20)(3,19)(4,14)(5,13)(6,15)(7,12)(8,11)(9,10)(16,23)(17,22)(18,24)(25,32)(26,31)(27,36)(28,35)(29,34)(30,33)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );
G=PermutationGroup([(1,16),(2,17),(3,18),(4,7),(5,8),(6,9),(10,15),(11,13),(12,14),(19,24),(20,22),(21,23),(25,33),(26,34),(27,35),(28,36),(29,31),(30,32),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,13,21,5),(2,14,19,6),(3,15,20,4),(7,18,10,22),(8,16,11,23),(9,17,12,24),(25,43,28,46),(26,44,29,47),(27,45,30,48),(31,41,34,38),(32,42,35,39),(33,37,36,40)], [(1,29),(2,27),(3,25),(4,43),(5,47),(6,45),(7,37),(8,41),(9,39),(10,40),(11,38),(12,42),(13,44),(14,48),(15,46),(16,31),(17,35),(18,33),(19,30),(20,28),(21,26),(22,36),(23,34),(24,32)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,21),(2,20),(3,19),(4,14),(5,13),(6,15),(7,12),(8,11),(9,10),(16,23),(17,22),(18,24),(25,32),(26,31),(27,36),(28,35),(29,34),(30,33),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)])
Matrix representation ►G ⊆ GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 5 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 10 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 5 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,10,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,5,0,0,0,0,0,12] >;
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 6A | 6B | 6C | 6D | ··· | 6I | 12A | 12B | 12C | 12D | 12E | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C4○D4 | C3⋊D4 | S3×C4○D4 |
kernel | (C2×D4)⋊43D6 | C23.26D6 | C4×C3⋊D4 | C23.23D6 | C23⋊2D6 | D6⋊3D4 | D6⋊3Q8 | S3×C22×C4 | C6×C4○D4 | C2×C4○D4 | C2×C12 | C22×C4 | C2×D4 | C2×Q8 | D6 | C2×C4 | C2 |
# reps | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 4 | 3 | 3 | 1 | 8 | 8 | 4 |
In GAP, Magma, Sage, TeX
(C_2\times D_4)\rtimes_{43}D_6
% in TeX
G:=Group("(C2xD4):43D6");
// GroupNames label
G:=SmallGroup(192,1387);
// by ID
G=gap.SmallGroup(192,1387);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,184,675,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^6=e^2=1,a*b=b*a,e*c*e=a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^2*c,e*d*e=d^-1>;
// generators/relations