Copied to
clipboard

G = C3×C23.D5order 240 = 24·3·5

Direct product of C3 and C23.D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C23.D5, C30.44D4, (C2×C30)⋊8C4, (C2×C10)⋊7C12, (C2×C6)⋊1Dic5, C30.57(C2×C4), (C6×Dic5)⋊8C2, (C2×Dic5)⋊2C6, C10.11(C3×D4), (C2×C6).35D10, C2.5(C6×Dic5), (C22×C6).1D5, C23.2(C3×D5), C22.7(C6×D5), C1511(C22⋊C4), C10.16(C2×C12), C6.27(C5⋊D4), (C22×C30).4C2, (C22×C10).4C6, C6.15(C2×Dic5), C222(C3×Dic5), (C2×C30).36C22, C53(C3×C22⋊C4), C2.3(C3×C5⋊D4), (C2×C10).7(C2×C6), SmallGroup(240,48)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C23.D5
C1C5C10C2×C10C2×C30C6×Dic5 — C3×C23.D5
C5C10 — C3×C23.D5
C1C2×C6C22×C6

Generators and relations for C3×C23.D5
 G = < a,b,c,d,e,f | a3=b2=c2=d2=e5=1, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 148 in 68 conjugacy classes, 38 normal (18 characteristic)
C1, C2, C2 [×2], C2 [×2], C3, C4 [×2], C22, C22 [×2], C22 [×2], C5, C6, C6 [×2], C6 [×2], C2×C4 [×2], C23, C10, C10 [×2], C10 [×2], C12 [×2], C2×C6, C2×C6 [×2], C2×C6 [×2], C15, C22⋊C4, Dic5 [×2], C2×C10, C2×C10 [×2], C2×C10 [×2], C2×C12 [×2], C22×C6, C30, C30 [×2], C30 [×2], C2×Dic5 [×2], C22×C10, C3×C22⋊C4, C3×Dic5 [×2], C2×C30, C2×C30 [×2], C2×C30 [×2], C23.D5, C6×Dic5 [×2], C22×C30, C3×C23.D5
Quotients: C1, C2 [×3], C3, C4 [×2], C22, C6 [×3], C2×C4, D4 [×2], D5, C12 [×2], C2×C6, C22⋊C4, Dic5 [×2], D10, C2×C12, C3×D4 [×2], C3×D5, C2×Dic5, C5⋊D4 [×2], C3×C22⋊C4, C3×Dic5 [×2], C6×D5, C23.D5, C6×Dic5, C3×C5⋊D4 [×2], C3×C23.D5

Smallest permutation representation of C3×C23.D5
On 120 points
Generators in S120
(1 41 21)(2 42 22)(3 43 23)(4 44 24)(5 45 25)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)(81 96)(82 97)(83 98)(84 99)(85 100)(86 91)(87 92)(88 93)(89 94)(90 95)(101 116)(102 117)(103 118)(104 119)(105 120)(106 111)(107 112)(108 113)(109 114)(110 115)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 73 11 63)(2 72 12 62)(3 71 13 61)(4 75 14 65)(5 74 15 64)(6 78 16 68)(7 77 17 67)(8 76 18 66)(9 80 19 70)(10 79 20 69)(21 93 31 83)(22 92 32 82)(23 91 33 81)(24 95 34 85)(25 94 35 84)(26 98 36 88)(27 97 37 87)(28 96 38 86)(29 100 39 90)(30 99 40 89)(41 113 51 103)(42 112 52 102)(43 111 53 101)(44 115 54 105)(45 114 55 104)(46 118 56 108)(47 117 57 107)(48 116 58 106)(49 120 59 110)(50 119 60 109)

G:=sub<Sym(120)| (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,96)(82,97)(83,98)(84,99)(85,100)(86,91)(87,92)(88,93)(89,94)(90,95)(101,116)(102,117)(103,118)(104,119)(105,120)(106,111)(107,112)(108,113)(109,114)(110,115), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,73,11,63)(2,72,12,62)(3,71,13,61)(4,75,14,65)(5,74,15,64)(6,78,16,68)(7,77,17,67)(8,76,18,66)(9,80,19,70)(10,79,20,69)(21,93,31,83)(22,92,32,82)(23,91,33,81)(24,95,34,85)(25,94,35,84)(26,98,36,88)(27,97,37,87)(28,96,38,86)(29,100,39,90)(30,99,40,89)(41,113,51,103)(42,112,52,102)(43,111,53,101)(44,115,54,105)(45,114,55,104)(46,118,56,108)(47,117,57,107)(48,116,58,106)(49,120,59,110)(50,119,60,109)>;

G:=Group( (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75)(81,96)(82,97)(83,98)(84,99)(85,100)(86,91)(87,92)(88,93)(89,94)(90,95)(101,116)(102,117)(103,118)(104,119)(105,120)(106,111)(107,112)(108,113)(109,114)(110,115), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,73,11,63)(2,72,12,62)(3,71,13,61)(4,75,14,65)(5,74,15,64)(6,78,16,68)(7,77,17,67)(8,76,18,66)(9,80,19,70)(10,79,20,69)(21,93,31,83)(22,92,32,82)(23,91,33,81)(24,95,34,85)(25,94,35,84)(26,98,36,88)(27,97,37,87)(28,96,38,86)(29,100,39,90)(30,99,40,89)(41,113,51,103)(42,112,52,102)(43,111,53,101)(44,115,54,105)(45,114,55,104)(46,118,56,108)(47,117,57,107)(48,116,58,106)(49,120,59,110)(50,119,60,109) );

G=PermutationGroup([(1,41,21),(2,42,22),(3,43,23),(4,44,24),(5,45,25),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75),(81,96),(82,97),(83,98),(84,99),(85,100),(86,91),(87,92),(88,93),(89,94),(90,95),(101,116),(102,117),(103,118),(104,119),(105,120),(106,111),(107,112),(108,113),(109,114),(110,115)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,73,11,63),(2,72,12,62),(3,71,13,61),(4,75,14,65),(5,74,15,64),(6,78,16,68),(7,77,17,67),(8,76,18,66),(9,80,19,70),(10,79,20,69),(21,93,31,83),(22,92,32,82),(23,91,33,81),(24,95,34,85),(25,94,35,84),(26,98,36,88),(27,97,37,87),(28,96,38,86),(29,100,39,90),(30,99,40,89),(41,113,51,103),(42,112,52,102),(43,111,53,101),(44,115,54,105),(45,114,55,104),(46,118,56,108),(47,117,57,107),(48,116,58,106),(49,120,59,110),(50,119,60,109)])

C3×C23.D5 is a maximal subgroup of
C158(C23⋊C4)  C159(C23⋊C4)  C23.D5⋊S3  Dic15.19D4  C23.26(S3×D5)  C23.13(S3×D5)  C23.14(S3×D5)  C23.48(S3×D5)  C10.(C2×D12)  (C2×C10).D12  (S3×C10).D4  C1528(C4×D4)  D307D4  Dic154D4  Dic1517D4  D30.45D4  D30.16D4  (C2×C10)⋊11D12  D3019D4  (C2×C10)⋊8Dic6  Dic15.48D4  C3×D5×C22⋊C4  C12×C5⋊D4  C3×D4×Dic5

78 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D5A5B6A···6F6G6H6I6J10A···10N12A···12H15A15B15C15D30A···30AB
order122222334444556···6666610···1012···121515151530···30
size1111221110101010221···122222···210···1022222···2

78 irreducible representations

dim111111112222222222
type+++++-+
imageC1C2C2C3C4C6C6C12D4D5Dic5D10C3×D4C3×D5C5⋊D4C3×Dic5C6×D5C3×C5⋊D4
kernelC3×C23.D5C6×Dic5C22×C30C23.D5C2×C30C2×Dic5C22×C10C2×C10C30C22×C6C2×C6C2×C6C10C23C6C22C22C2
# reps1212442822424488416

Matrix representation of C3×C23.D5 in GL4(𝔽61) generated by

1000
04700
0010
0001
,
1000
06000
00600
0001
,
60000
0100
00600
00060
,
1000
0100
00600
00060
,
1000
0100
0090
00034
,
11000
0100
00034
00520
G:=sub<GL(4,GF(61))| [1,0,0,0,0,47,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,60,0,0,0,0,60,0,0,0,0,1],[60,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,34],[11,0,0,0,0,1,0,0,0,0,0,52,0,0,34,0] >;

C3×C23.D5 in GAP, Magma, Sage, TeX

C_3\times C_2^3.D_5
% in TeX

G:=Group("C3xC2^3.D5");
// GroupNames label

G:=SmallGroup(240,48);
// by ID

G=gap.SmallGroup(240,48);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,313,6917]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^5=1,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽