metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D56⋊10C4, Dic28⋊10C4, M4(2).26D14, C7⋊C8.35D4, C56⋊C2⋊4C4, C56⋊C4⋊1C2, C8.11(C4×D7), C7⋊3(C8.26D4), C56.29(C2×C4), C4.212(D4×D7), C8.C4⋊4D7, C14.55(C4×D4), (C2×C8).69D14, D28⋊4C4⋊7C2, D28.C4⋊10C2, D28.10(C2×C4), C28.371(C2×D4), D56⋊7C2.4C2, C28.54(C22×C4), (C2×C56).41C22, (C2×C28).310C23, Dic14.10(C2×C4), C4○D28.17C22, C2.15(D28⋊C4), C22.1(Q8⋊2D7), (C4×Dic7).40C22, (C7×M4(2)).20C22, C4.46(C2×C4×D7), (C7×C8.C4)⋊4C2, (C2×C7⋊C8).78C22, (C2×C14).1(C4○D4), (C2×C4).413(C22×D7), SmallGroup(448,428)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D56⋊10C4
G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a13, cbc-1=a26b >
Subgroups: 508 in 104 conjugacy classes, 45 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, Dic7, C28, D14, C2×C14, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C8.26D4, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C2×C7⋊C8, C4×Dic7, C2×C56, C7×M4(2), C4○D28, C56⋊C4, D28⋊4C4, C7×C8.C4, D56⋊7C2, D28.C4, D56⋊10C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C8.26D4, C2×C4×D7, D4×D7, Q8⋊2D7, D28⋊C4, D56⋊10C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 84)(9 83)(10 82)(11 81)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 71)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 61)(32 60)(33 59)(34 58)(35 57)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 105)(44 104)(45 103)(46 102)(47 101)(48 100)(49 99)(50 98)(51 97)(52 96)(53 95)(54 94)(55 93)(56 92)
(1 43 29 15)(2 56 30 28)(3 13 31 41)(4 26 32 54)(5 39 33 11)(6 52 34 24)(7 9 35 37)(8 22 36 50)(10 48 38 20)(12 18 40 46)(14 44 42 16)(17 27 45 55)(19 53 47 25)(21 23 49 51)(58 70)(59 83)(60 96)(61 109)(62 66)(63 79)(64 92)(65 105)(67 75)(68 88)(69 101)(72 84)(73 97)(74 110)(76 80)(77 93)(78 106)(81 89)(82 102)(86 98)(87 111)(90 94)(91 107)(95 103)(100 112)(104 108)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92), (1,43,29,15)(2,56,30,28)(3,13,31,41)(4,26,32,54)(5,39,33,11)(6,52,34,24)(7,9,35,37)(8,22,36,50)(10,48,38,20)(12,18,40,46)(14,44,42,16)(17,27,45,55)(19,53,47,25)(21,23,49,51)(58,70)(59,83)(60,96)(61,109)(62,66)(63,79)(64,92)(65,105)(67,75)(68,88)(69,101)(72,84)(73,97)(74,110)(76,80)(77,93)(78,106)(81,89)(82,102)(86,98)(87,111)(90,94)(91,107)(95,103)(100,112)(104,108)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92), (1,43,29,15)(2,56,30,28)(3,13,31,41)(4,26,32,54)(5,39,33,11)(6,52,34,24)(7,9,35,37)(8,22,36,50)(10,48,38,20)(12,18,40,46)(14,44,42,16)(17,27,45,55)(19,53,47,25)(21,23,49,51)(58,70)(59,83)(60,96)(61,109)(62,66)(63,79)(64,92)(65,105)(67,75)(68,88)(69,101)(72,84)(73,97)(74,110)(76,80)(77,93)(78,106)(81,89)(82,102)(86,98)(87,111)(90,94)(91,107)(95,103)(100,112)(104,108) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,84),(9,83),(10,82),(11,81),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,71),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,61),(32,60),(33,59),(34,58),(35,57),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,105),(44,104),(45,103),(46,102),(47,101),(48,100),(49,99),(50,98),(51,97),(52,96),(53,95),(54,94),(55,93),(56,92)], [(1,43,29,15),(2,56,30,28),(3,13,31,41),(4,26,32,54),(5,39,33,11),(6,52,34,24),(7,9,35,37),(8,22,36,50),(10,48,38,20),(12,18,40,46),(14,44,42,16),(17,27,45,55),(19,53,47,25),(21,23,49,51),(58,70),(59,83),(60,96),(61,109),(62,66),(63,79),(64,92),(65,105),(67,75),(68,88),(69,101),(72,84),(73,97),(74,110),(76,80),(77,93),(78,106),(81,89),(82,102),(86,98),(87,111),(90,94),(91,107),(95,103),(100,112),(104,108)]])
64 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 7A | 7B | 7C | 8A | ··· | 8F | 8G | 8H | 8I | 8J | 14A | 14B | 14C | 14D | 14E | 14F | 28A | ··· | 28F | 28G | 28H | 28I | 56A | ··· | 56L | 56M | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 28 | ··· | 28 | 28 | 28 | 28 | 56 | ··· | 56 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 28 | 28 | 1 | 1 | 2 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 4 | ··· | 4 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | D7 | C4○D4 | D14 | D14 | C4×D7 | C8.26D4 | D4×D7 | Q8⋊2D7 | D56⋊10C4 |
kernel | D56⋊10C4 | C56⋊C4 | D28⋊4C4 | C7×C8.C4 | D56⋊7C2 | D28.C4 | C56⋊C2 | D56 | Dic28 | C7⋊C8 | C8.C4 | C2×C14 | C2×C8 | M4(2) | C8 | C7 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 3 | 2 | 3 | 6 | 12 | 2 | 3 | 3 | 12 |
Matrix representation of D56⋊10C4 ►in GL6(𝔽113)
24 | 112 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 98 | 0 |
0 | 0 | 0 | 0 | 0 | 98 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
24 | 112 | 0 | 0 | 0 | 0 |
10 | 89 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 15 |
0 | 0 | 0 | 0 | 98 | 0 |
98 | 0 | 0 | 0 | 0 | 0 |
92 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 98 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 0 | 112 |
G:=sub<GL(6,GF(113))| [24,1,0,0,0,0,112,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,98,0,0,0,0,0,0,98,0,0],[24,10,0,0,0,0,112,89,0,0,0,0,0,0,0,112,0,0,0,0,112,0,0,0,0,0,0,0,0,98,0,0,0,0,15,0],[98,92,0,0,0,0,0,15,0,0,0,0,0,0,98,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,0,0,0,0,0,112] >;
D56⋊10C4 in GAP, Magma, Sage, TeX
D_{56}\rtimes_{10}C_4
% in TeX
G:=Group("D56:10C4");
// GroupNames label
G:=SmallGroup(448,428);
// by ID
G=gap.SmallGroup(448,428);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,219,58,136,1684,438,102,18822]);
// Polycyclic
G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^26*b>;
// generators/relations