Copied to
clipboard

G = D5610C4order 448 = 26·7

10th semidirect product of D56 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5610C4, Dic2810C4, M4(2).26D14, C7⋊C8.35D4, C56⋊C24C4, C56⋊C41C2, C8.11(C4×D7), C73(C8.26D4), C56.29(C2×C4), C4.212(D4×D7), C8.C44D7, C14.55(C4×D4), (C2×C8).69D14, D284C47C2, D28.C410C2, D28.10(C2×C4), C28.371(C2×D4), D567C2.4C2, C28.54(C22×C4), (C2×C56).41C22, (C2×C28).310C23, Dic14.10(C2×C4), C4○D28.17C22, C2.15(D28⋊C4), C22.1(Q82D7), (C4×Dic7).40C22, (C7×M4(2)).20C22, C4.46(C2×C4×D7), (C7×C8.C4)⋊4C2, (C2×C7⋊C8).78C22, (C2×C14).1(C4○D4), (C2×C4).413(C22×D7), SmallGroup(448,428)

Series: Derived Chief Lower central Upper central

C1C28 — D5610C4
C1C7C14C28C2×C28C4○D28D567C2 — D5610C4
C7C14C28 — D5610C4
C1C4C2×C4C8.C4

Generators and relations for D5610C4
 G = < a,b,c | a56=b2=c4=1, bab=a-1, cac-1=a13, cbc-1=a26b >

Subgroups: 508 in 104 conjugacy classes, 45 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, D7, C14, C14, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, Dic7, C28, D14, C2×C14, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C7⋊C8, C56, C56, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C8.26D4, C8×D7, C8⋊D7, C56⋊C2, D56, Dic28, C2×C7⋊C8, C4×Dic7, C2×C56, C7×M4(2), C4○D28, C56⋊C4, D284C4, C7×C8.C4, D567C2, D28.C4, D5610C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22×C4, C2×D4, C4○D4, D14, C4×D4, C4×D7, C22×D7, C8.26D4, C2×C4×D7, D4×D7, Q82D7, D28⋊C4, D5610C4

Smallest permutation representation of D5610C4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 84)(9 83)(10 82)(11 81)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 73)(20 72)(21 71)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 61)(32 60)(33 59)(34 58)(35 57)(36 112)(37 111)(38 110)(39 109)(40 108)(41 107)(42 106)(43 105)(44 104)(45 103)(46 102)(47 101)(48 100)(49 99)(50 98)(51 97)(52 96)(53 95)(54 94)(55 93)(56 92)
(1 43 29 15)(2 56 30 28)(3 13 31 41)(4 26 32 54)(5 39 33 11)(6 52 34 24)(7 9 35 37)(8 22 36 50)(10 48 38 20)(12 18 40 46)(14 44 42 16)(17 27 45 55)(19 53 47 25)(21 23 49 51)(58 70)(59 83)(60 96)(61 109)(62 66)(63 79)(64 92)(65 105)(67 75)(68 88)(69 101)(72 84)(73 97)(74 110)(76 80)(77 93)(78 106)(81 89)(82 102)(86 98)(87 111)(90 94)(91 107)(95 103)(100 112)(104 108)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92), (1,43,29,15)(2,56,30,28)(3,13,31,41)(4,26,32,54)(5,39,33,11)(6,52,34,24)(7,9,35,37)(8,22,36,50)(10,48,38,20)(12,18,40,46)(14,44,42,16)(17,27,45,55)(19,53,47,25)(21,23,49,51)(58,70)(59,83)(60,96)(61,109)(62,66)(63,79)(64,92)(65,105)(67,75)(68,88)(69,101)(72,84)(73,97)(74,110)(76,80)(77,93)(78,106)(81,89)(82,102)(86,98)(87,111)(90,94)(91,107)(95,103)(100,112)(104,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,84)(9,83)(10,82)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,73)(20,72)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,60)(33,59)(34,58)(35,57)(36,112)(37,111)(38,110)(39,109)(40,108)(41,107)(42,106)(43,105)(44,104)(45,103)(46,102)(47,101)(48,100)(49,99)(50,98)(51,97)(52,96)(53,95)(54,94)(55,93)(56,92), (1,43,29,15)(2,56,30,28)(3,13,31,41)(4,26,32,54)(5,39,33,11)(6,52,34,24)(7,9,35,37)(8,22,36,50)(10,48,38,20)(12,18,40,46)(14,44,42,16)(17,27,45,55)(19,53,47,25)(21,23,49,51)(58,70)(59,83)(60,96)(61,109)(62,66)(63,79)(64,92)(65,105)(67,75)(68,88)(69,101)(72,84)(73,97)(74,110)(76,80)(77,93)(78,106)(81,89)(82,102)(86,98)(87,111)(90,94)(91,107)(95,103)(100,112)(104,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,84),(9,83),(10,82),(11,81),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,73),(20,72),(21,71),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,61),(32,60),(33,59),(34,58),(35,57),(36,112),(37,111),(38,110),(39,109),(40,108),(41,107),(42,106),(43,105),(44,104),(45,103),(46,102),(47,101),(48,100),(49,99),(50,98),(51,97),(52,96),(53,95),(54,94),(55,93),(56,92)], [(1,43,29,15),(2,56,30,28),(3,13,31,41),(4,26,32,54),(5,39,33,11),(6,52,34,24),(7,9,35,37),(8,22,36,50),(10,48,38,20),(12,18,40,46),(14,44,42,16),(17,27,45,55),(19,53,47,25),(21,23,49,51),(58,70),(59,83),(60,96),(61,109),(62,66),(63,79),(64,92),(65,105),(67,75),(68,88),(69,101),(72,84),(73,97),(74,110),(76,80),(77,93),(78,106),(81,89),(82,102),(86,98),(87,111),(90,94),(91,107),(95,103),(100,112),(104,108)]])

64 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G7A7B7C8A···8F8G8H8I8J14A14B14C14D14E14F28A···28F28G28H28I56A···56L56M···56X
order1222244444447778···8888814141414141428···2828282856···5656···56
size1122828112282828282224···4141414142224442···24444···48···8

64 irreducible representations

dim1111111112222224444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4D4D7C4○D4D14D14C4×D7C8.26D4D4×D7Q82D7D5610C4
kernelD5610C4C56⋊C4D284C4C7×C8.C4D567C2D28.C4C56⋊C2D56Dic28C7⋊C8C8.C4C2×C14C2×C8M4(2)C8C7C4C22C1
# reps112112422232361223312

Matrix representation of D5610C4 in GL6(𝔽113)

241120000
100000
0000980
0000098
001000
00011200
,
241120000
10890000
00011200
00112000
0000015
0000980
,
9800000
92150000
0098000
000100
0000150
00000112

G:=sub<GL(6,GF(113))| [24,1,0,0,0,0,112,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,98,0,0,0,0,0,0,98,0,0],[24,10,0,0,0,0,112,89,0,0,0,0,0,0,0,112,0,0,0,0,112,0,0,0,0,0,0,0,0,98,0,0,0,0,15,0],[98,92,0,0,0,0,0,15,0,0,0,0,0,0,98,0,0,0,0,0,0,1,0,0,0,0,0,0,15,0,0,0,0,0,0,112] >;

D5610C4 in GAP, Magma, Sage, TeX

D_{56}\rtimes_{10}C_4
% in TeX

G:=Group("D56:10C4");
// GroupNames label

G:=SmallGroup(448,428);
// by ID

G=gap.SmallGroup(448,428);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,219,58,136,1684,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^26*b>;
// generators/relations

׿
×
𝔽