Copied to
clipboard

## G = C62.91C23order 288 = 25·32

### 86th non-split extension by C62 of C23 acting via C23/C2=C22

Series: Derived Chief Lower central Upper central

 Derived series C1 — C3×C6 — C62.91C23
 Chief series C1 — C3 — C32 — C3×C6 — C62 — S3×C2×C6 — C22×S32 — C62.91C23
 Lower central C32 — C3×C6 — C62.91C23
 Upper central C1 — C22 — C2×C4

Generators and relations for C62.91C23
G = < a,b,c,d,e | a6=b6=c2=d2=1, e2=a3, ab=ba, ac=ca, dad=a-1, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=b3d >

Subgroups: 1298 in 291 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C3×S3, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C3×Dic3, C3⋊Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C62, D6⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, S3×C23, C6.D6, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C2×S32, C2×S32, S3×C2×C6, C22×C3⋊S3, S3×C22⋊C4, D6⋊Dic3, C3×D6⋊C4, C2×C6.D6, C2×C4×C3⋊S3, C22×S32, C62.91C23
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, C22×S3, C2×C22⋊C4, S32, S3×C2×C4, S3×D4, C2×S32, S3×C22⋊C4, C4×S32, D6⋊D6, Dic3⋊D6, C62.91C23

Smallest permutation representation of C62.91C23
On 48 points
Generators in S48
```(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 41)(14 42)(15 37)(16 38)(17 39)(18 40)(19 46)(20 47)(21 48)(22 43)(23 44)(24 45)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 30)(8 29)(9 28)(10 27)(11 26)(12 25)(13 38)(14 37)(15 42)(16 41)(17 40)(18 39)(19 47)(20 46)(21 45)(22 44)(23 43)(24 48)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 33 10 36)(8 34 11 31)(9 35 12 32)(13 27 16 30)(14 28 17 25)(15 29 18 26)(37 47 40 44)(38 48 41 45)(39 43 42 46)```

`G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46)>;`

`G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,41)(14,42)(15,37)(16,38)(17,39)(18,40)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,30)(8,29)(9,28)(10,27)(11,26)(12,25)(13,38)(14,37)(15,42)(16,41)(17,40)(18,39)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46) );`

`G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,41),(14,42),(15,37),(16,38),(17,39),(18,40),(19,46),(20,47),(21,48),(22,43),(23,44),(24,45)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,30),(8,29),(9,28),(10,27),(11,26),(12,25),(13,38),(14,37),(15,42),(16,41),(17,40),(18,39),(19,47),(20,46),(21,45),(22,44),(23,43),(24,48)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,33,10,36),(8,34,11,31),(9,35,12,32),(13,27,16,30),(14,28,17,25),(15,29,18,26),(37,47,40,44),(38,48,41,45),(39,43,42,46)]])`

48 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 2I 2J 2K 3A 3B 3C 4A 4B 4C 4D 4E 4F 4G 4H 6A ··· 6F 6G 6H 6I 6J 6K 6L 6M 12A ··· 12H 12I 12J 12K 12L order 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 6 ··· 6 6 6 6 6 6 6 6 12 ··· 12 12 12 12 12 size 1 1 1 1 6 6 6 6 9 9 9 9 2 2 4 2 2 6 6 6 6 18 18 2 ··· 2 4 4 4 12 12 12 12 4 ··· 4 12 12 12 12

48 irreducible representations

 dim 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 type + + + + + + + + + + + + + + + image C1 C2 C2 C2 C2 C2 C4 S3 D4 D6 D6 D6 C4×S3 S32 S3×D4 C2×S32 C4×S32 D6⋊D6 Dic3⋊D6 kernel C62.91C23 D6⋊Dic3 C3×D6⋊C4 C2×C6.D6 C2×C4×C3⋊S3 C22×S32 C2×S32 D6⋊C4 C2×C3⋊S3 C2×Dic3 C2×C12 C22×S3 D6 C2×C4 C6 C22 C2 C2 C2 # reps 1 2 2 1 1 1 8 2 4 2 2 2 8 1 4 1 2 2 2

Matrix representation of C62.91C23 in GL8(𝔽13)

 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 12
,
 12 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 0 12 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 7 11 0 0 0 0 0 0 11 6 0 0 0 0 0 0 0 0 11 9 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 12 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 6 2 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0 0 11 9 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 12 12
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

`G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,7,11,0,0,0,0,0,0,11,6,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,6,2,0,0,0,0,0,0,2,7,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;`

C62.91C23 in GAP, Magma, Sage, TeX

`C_6^2._{91}C_2^3`
`% in TeX`

`G:=Group("C6^2.91C2^3");`
`// GroupNames label`

`G:=SmallGroup(288,569);`
`// by ID`

`G=gap.SmallGroup(288,569);`
`# by ID`

`G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,422,219,58,1356,9414]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e|a^6=b^6=c^2=d^2=1,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;`
`// generators/relations`

׿
×
𝔽