extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3xD4) = S3xC24:C2 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xD4) | 288,440 |
C6.2(S3xD4) = S3xD24 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4+ | C6.2(S3xD4) | 288,441 |
C6.3(S3xD4) = C24:1D6 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4+ | C6.3(S3xD4) | 288,442 |
C6.4(S3xD4) = D24:S3 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(S3xD4) | 288,443 |
C6.5(S3xD4) = S3xDic12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | 4- | C6.5(S3xD4) | 288,447 |
C6.6(S3xD4) = C24.3D6 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | 4- | C6.6(S3xD4) | 288,448 |
C6.7(S3xD4) = Dic12:S3 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(S3xD4) | 288,449 |
C6.8(S3xD4) = D6.1D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(S3xD4) | 288,454 |
C6.9(S3xD4) = D24:7S3 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | 4- | C6.9(S3xD4) | 288,455 |
C6.10(S3xD4) = D6.3D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | 4+ | C6.10(S3xD4) | 288,456 |
C6.11(S3xD4) = Dic3.D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.11(S3xD4) | 288,500 |
C6.12(S3xD4) = Dic3:4D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.12(S3xD4) | 288,528 |
C6.13(S3xD4) = S3xC4:Dic3 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.13(S3xD4) | 288,537 |
C6.14(S3xD4) = D6.D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.14(S3xD4) | 288,538 |
C6.15(S3xD4) = D6.9D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.15(S3xD4) | 288,539 |
C6.16(S3xD4) = Dic3xD12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.16(S3xD4) | 288,540 |
C6.17(S3xD4) = D6:2Dic6 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.17(S3xD4) | 288,541 |
C6.18(S3xD4) = Dic3:5D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.18(S3xD4) | 288,542 |
C6.19(S3xD4) = C62.65C23 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.19(S3xD4) | 288,543 |
C6.20(S3xD4) = D6:D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.20(S3xD4) | 288,554 |
C6.21(S3xD4) = D6:2D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.21(S3xD4) | 288,556 |
C6.22(S3xD4) = C12:7D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.22(S3xD4) | 288,557 |
C6.23(S3xD4) = Dic3:3D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.23(S3xD4) | 288,558 |
C6.24(S3xD4) = C12:D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.24(S3xD4) | 288,559 |
C6.25(S3xD4) = C12:3Dic6 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 96 | | C6.25(S3xD4) | 288,566 |
C6.26(S3xD4) = D6:4D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.26(S3xD4) | 288,570 |
C6.27(S3xD4) = D6:5D12 | φ: S3xD4/C4xS3 → C2 ⊆ Aut C6 | 48 | | C6.27(S3xD4) | 288,571 |
C6.28(S3xD4) = C24:9D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.28(S3xD4) | 288,444 |
C6.29(S3xD4) = C24:4D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.29(S3xD4) | 288,445 |
C6.30(S3xD4) = C24:6D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.30(S3xD4) | 288,446 |
C6.31(S3xD4) = C24.23D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.31(S3xD4) | 288,450 |
C6.32(S3xD4) = D12.2D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.32(S3xD4) | 288,457 |
C6.33(S3xD4) = D24:5S3 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.33(S3xD4) | 288,458 |
C6.34(S3xD4) = D12.4D6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | 4 | C6.34(S3xD4) | 288,459 |
C6.35(S3xD4) = C62.24C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | | C6.35(S3xD4) | 288,502 |
C6.36(S3xD4) = C62.55C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.36(S3xD4) | 288,533 |
C6.37(S3xD4) = D12:Dic3 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.37(S3xD4) | 288,546 |
C6.38(S3xD4) = D6:4Dic6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.38(S3xD4) | 288,547 |
C6.39(S3xD4) = C62.70C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | | C6.39(S3xD4) | 288,548 |
C6.40(S3xD4) = C62.72C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.40(S3xD4) | 288,550 |
C6.41(S3xD4) = C62.84C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.41(S3xD4) | 288,562 |
C6.42(S3xD4) = C62.85C23 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.42(S3xD4) | 288,563 |
C6.43(S3xD4) = C12:2D12 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 48 | | C6.43(S3xD4) | 288,564 |
C6.44(S3xD4) = C12:Dic6 | φ: S3xD4/D12 → C2 ⊆ Aut C6 | 96 | | C6.44(S3xD4) | 288,567 |
C6.45(S3xD4) = C62.10C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.45(S3xD4) | 288,488 |
C6.46(S3xD4) = C62.23C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.46(S3xD4) | 288,501 |
C6.47(S3xD4) = C62.35C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.47(S3xD4) | 288,513 |
C6.48(S3xD4) = C62.51C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.48(S3xD4) | 288,529 |
C6.49(S3xD4) = C62.53C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.49(S3xD4) | 288,531 |
C6.50(S3xD4) = D6:3Dic6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.50(S3xD4) | 288,544 |
C6.51(S3xD4) = C62.67C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.51(S3xD4) | 288,545 |
C6.52(S3xD4) = C62.82C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.52(S3xD4) | 288,560 |
C6.53(S3xD4) = C62.83C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 96 | | C6.53(S3xD4) | 288,561 |
C6.54(S3xD4) = C62.91C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.54(S3xD4) | 288,569 |
C6.55(S3xD4) = D12:D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.55(S3xD4) | 288,574 |
C6.56(S3xD4) = D12.D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.56(S3xD4) | 288,575 |
C6.57(S3xD4) = Dic6:D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.57(S3xD4) | 288,578 |
C6.58(S3xD4) = Dic6.D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.58(S3xD4) | 288,579 |
C6.59(S3xD4) = D12.8D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.59(S3xD4) | 288,584 |
C6.60(S3xD4) = D12:5D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 24 | 8+ | C6.60(S3xD4) | 288,585 |
C6.61(S3xD4) = D12.9D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.61(S3xD4) | 288,588 |
C6.62(S3xD4) = D12.10D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.62(S3xD4) | 288,589 |
C6.63(S3xD4) = Dic6.9D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.63(S3xD4) | 288,592 |
C6.64(S3xD4) = Dic6.10D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.64(S3xD4) | 288,593 |
C6.65(S3xD4) = D12.14D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8+ | C6.65(S3xD4) | 288,598 |
C6.66(S3xD4) = D12.15D6 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | 8- | C6.66(S3xD4) | 288,599 |
C6.67(S3xD4) = C62.95C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.67(S3xD4) | 288,601 |
C6.68(S3xD4) = C62.113C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.68(S3xD4) | 288,619 |
C6.69(S3xD4) = C62.115C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.69(S3xD4) | 288,621 |
C6.70(S3xD4) = C62.116C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 24 | | C6.70(S3xD4) | 288,622 |
C6.71(S3xD4) = C62.117C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.71(S3xD4) | 288,623 |
C6.72(S3xD4) = C62.121C23 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.72(S3xD4) | 288,627 |
C6.73(S3xD4) = C62:7D4 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.73(S3xD4) | 288,628 |
C6.74(S3xD4) = C62:8D4 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 24 | | C6.74(S3xD4) | 288,629 |
C6.75(S3xD4) = C62:4Q8 | φ: S3xD4/C3:D4 → C2 ⊆ Aut C6 | 48 | | C6.75(S3xD4) | 288,630 |
C6.76(S3xD4) = C22:2Dic18 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.76(S3xD4) | 288,88 |
C6.77(S3xD4) = C22:C4xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.77(S3xD4) | 288,90 |
C6.78(S3xD4) = Dic9:4D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.78(S3xD4) | 288,91 |
C6.79(S3xD4) = C22:3D36 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.79(S3xD4) | 288,92 |
C6.80(S3xD4) = C23.9D18 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.80(S3xD4) | 288,93 |
C6.81(S3xD4) = D18:D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.81(S3xD4) | 288,94 |
C6.82(S3xD4) = Dic9.D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.82(S3xD4) | 288,95 |
C6.83(S3xD4) = C36:Q8 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 288 | | C6.83(S3xD4) | 288,98 |
C6.84(S3xD4) = C4:C4xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.84(S3xD4) | 288,101 |
C6.85(S3xD4) = D36:C4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.85(S3xD4) | 288,103 |
C6.86(S3xD4) = D18.D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.86(S3xD4) | 288,104 |
C6.87(S3xD4) = C4:D36 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.87(S3xD4) | 288,105 |
C6.88(S3xD4) = D18:Q8 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.88(S3xD4) | 288,106 |
C6.89(S3xD4) = D8xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | 4+ | C6.89(S3xD4) | 288,120 |
C6.90(S3xD4) = D8:D9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | 4 | C6.90(S3xD4) | 288,121 |
C6.91(S3xD4) = D8:3D9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4- | C6.91(S3xD4) | 288,122 |
C6.92(S3xD4) = SD16xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | 4 | C6.92(S3xD4) | 288,123 |
C6.93(S3xD4) = D72:C2 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | 4+ | C6.93(S3xD4) | 288,124 |
C6.94(S3xD4) = SD16:D9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4- | C6.94(S3xD4) | 288,125 |
C6.95(S3xD4) = SD16:3D9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4 | C6.95(S3xD4) | 288,126 |
C6.96(S3xD4) = Q16xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4- | C6.96(S3xD4) | 288,127 |
C6.97(S3xD4) = Q16:D9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4 | C6.97(S3xD4) | 288,128 |
C6.98(S3xD4) = D72:5C2 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | 4+ | C6.98(S3xD4) | 288,129 |
C6.99(S3xD4) = D4xDic9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.99(S3xD4) | 288,144 |
C6.100(S3xD4) = C23:2D18 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.100(S3xD4) | 288,147 |
C6.101(S3xD4) = C36:2D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.101(S3xD4) | 288,148 |
C6.102(S3xD4) = Dic9:D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.102(S3xD4) | 288,149 |
C6.103(S3xD4) = C36:D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.103(S3xD4) | 288,150 |
C6.104(S3xD4) = C2xD4xD9 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.104(S3xD4) | 288,356 |
C6.105(S3xD4) = C62:6Q8 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.105(S3xD4) | 288,735 |
C6.106(S3xD4) = C22:C4xC3:S3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.106(S3xD4) | 288,737 |
C6.107(S3xD4) = C62.225C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.107(S3xD4) | 288,738 |
C6.108(S3xD4) = C62:12D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.108(S3xD4) | 288,739 |
C6.109(S3xD4) = C62.227C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.109(S3xD4) | 288,740 |
C6.110(S3xD4) = C62.228C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.110(S3xD4) | 288,741 |
C6.111(S3xD4) = C62.229C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.111(S3xD4) | 288,742 |
C6.112(S3xD4) = C12:2Dic6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 288 | | C6.112(S3xD4) | 288,745 |
C6.113(S3xD4) = C4:C4xC3:S3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.113(S3xD4) | 288,748 |
C6.114(S3xD4) = C62.237C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.114(S3xD4) | 288,750 |
C6.115(S3xD4) = C62.238C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.115(S3xD4) | 288,751 |
C6.116(S3xD4) = C12:3D12 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.116(S3xD4) | 288,752 |
C6.117(S3xD4) = C62.240C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.117(S3xD4) | 288,753 |
C6.118(S3xD4) = D8xC3:S3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.118(S3xD4) | 288,767 |
C6.119(S3xD4) = C24:8D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.119(S3xD4) | 288,768 |
C6.120(S3xD4) = C24.26D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.120(S3xD4) | 288,769 |
C6.121(S3xD4) = SD16xC3:S3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.121(S3xD4) | 288,770 |
C6.122(S3xD4) = C24:7D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.122(S3xD4) | 288,771 |
C6.123(S3xD4) = C24.32D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.123(S3xD4) | 288,772 |
C6.124(S3xD4) = C24.40D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.124(S3xD4) | 288,773 |
C6.125(S3xD4) = Q16xC3:S3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.125(S3xD4) | 288,774 |
C6.126(S3xD4) = C24.35D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.126(S3xD4) | 288,775 |
C6.127(S3xD4) = C24.28D6 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.127(S3xD4) | 288,776 |
C6.128(S3xD4) = D4xC3:Dic3 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.128(S3xD4) | 288,791 |
C6.129(S3xD4) = C62:13D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 72 | | C6.129(S3xD4) | 288,794 |
C6.130(S3xD4) = C62.256C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.130(S3xD4) | 288,795 |
C6.131(S3xD4) = C62:14D4 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.131(S3xD4) | 288,796 |
C6.132(S3xD4) = C62.258C23 | φ: S3xD4/C3xD4 → C2 ⊆ Aut C6 | 144 | | C6.132(S3xD4) | 288,797 |
C6.133(S3xD4) = C62.9C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.133(S3xD4) | 288,487 |
C6.134(S3xD4) = C62.20C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.134(S3xD4) | 288,498 |
C6.135(S3xD4) = D6:Dic6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.135(S3xD4) | 288,499 |
C6.136(S3xD4) = S3xDic3:C4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.136(S3xD4) | 288,524 |
C6.137(S3xD4) = C62.49C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.137(S3xD4) | 288,527 |
C6.138(S3xD4) = C62.54C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.138(S3xD4) | 288,532 |
C6.139(S3xD4) = Dic3:D12 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.139(S3xD4) | 288,534 |
C6.140(S3xD4) = D6:1Dic6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.140(S3xD4) | 288,535 |
C6.141(S3xD4) = C62.58C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.141(S3xD4) | 288,536 |
C6.142(S3xD4) = C62.74C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.142(S3xD4) | 288,552 |
C6.143(S3xD4) = C62.75C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | | C6.143(S3xD4) | 288,553 |
C6.144(S3xD4) = C62.77C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.144(S3xD4) | 288,555 |
C6.145(S3xD4) = S3xD6:C4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.145(S3xD4) | 288,568 |
C6.146(S3xD4) = S3xD4:S3 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.146(S3xD4) | 288,572 |
C6.147(S3xD4) = Dic6:3D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.147(S3xD4) | 288,573 |
C6.148(S3xD4) = S3xD4.S3 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8- | C6.148(S3xD4) | 288,576 |
C6.149(S3xD4) = Dic6.19D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8- | C6.149(S3xD4) | 288,577 |
C6.150(S3xD4) = D12:9D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8- | C6.150(S3xD4) | 288,580 |
C6.151(S3xD4) = D12.22D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8- | C6.151(S3xD4) | 288,581 |
C6.152(S3xD4) = D12.7D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.152(S3xD4) | 288,582 |
C6.153(S3xD4) = Dic6.20D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.153(S3xD4) | 288,583 |
C6.154(S3xD4) = S3xQ8:2S3 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.154(S3xD4) | 288,586 |
C6.155(S3xD4) = D12:6D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.155(S3xD4) | 288,587 |
C6.156(S3xD4) = S3xC3:Q16 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | 8- | C6.156(S3xD4) | 288,590 |
C6.157(S3xD4) = D12.11D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | 8- | C6.157(S3xD4) | 288,591 |
C6.158(S3xD4) = D12.24D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | 8- | C6.158(S3xD4) | 288,594 |
C6.159(S3xD4) = D12.12D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 96 | 8- | C6.159(S3xD4) | 288,595 |
C6.160(S3xD4) = Dic6.22D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.160(S3xD4) | 288,596 |
C6.161(S3xD4) = D12.13D6 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | 8+ | C6.161(S3xD4) | 288,597 |
C6.162(S3xD4) = C62.94C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.162(S3xD4) | 288,600 |
C6.163(S3xD4) = C62.100C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.163(S3xD4) | 288,606 |
C6.164(S3xD4) = C62.101C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.164(S3xD4) | 288,607 |
C6.165(S3xD4) = C62:3Q8 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.165(S3xD4) | 288,612 |
C6.166(S3xD4) = S3xC6.D4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.166(S3xD4) | 288,616 |
C6.167(S3xD4) = C62.111C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.167(S3xD4) | 288,617 |
C6.168(S3xD4) = C62.112C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.168(S3xD4) | 288,618 |
C6.169(S3xD4) = Dic3xC3:D4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.169(S3xD4) | 288,620 |
C6.170(S3xD4) = C62:4D4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.170(S3xD4) | 288,624 |
C6.171(S3xD4) = C62:5D4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.171(S3xD4) | 288,625 |
C6.172(S3xD4) = C62:6D4 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.172(S3xD4) | 288,626 |
C6.173(S3xD4) = C62.125C23 | φ: S3xD4/C22xS3 → C2 ⊆ Aut C6 | 48 | | C6.173(S3xD4) | 288,631 |
C6.174(S3xD4) = C3xDic3.D4 | central extension (φ=1) | 48 | | C6.174(S3xD4) | 288,649 |
C6.175(S3xD4) = C3xS3xC22:C4 | central extension (φ=1) | 48 | | C6.175(S3xD4) | 288,651 |
C6.176(S3xD4) = C3xDic3:4D4 | central extension (φ=1) | 48 | | C6.176(S3xD4) | 288,652 |
C6.177(S3xD4) = C3xD6:D4 | central extension (φ=1) | 48 | | C6.177(S3xD4) | 288,653 |
C6.178(S3xD4) = C3xC23.9D6 | central extension (φ=1) | 48 | | C6.178(S3xD4) | 288,654 |
C6.179(S3xD4) = C3xDic3:D4 | central extension (φ=1) | 48 | | C6.179(S3xD4) | 288,655 |
C6.180(S3xD4) = C3xC23.11D6 | central extension (φ=1) | 48 | | C6.180(S3xD4) | 288,656 |
C6.181(S3xD4) = C3xC12:Q8 | central extension (φ=1) | 96 | | C6.181(S3xD4) | 288,659 |
C6.182(S3xD4) = C3xS3xC4:C4 | central extension (φ=1) | 96 | | C6.182(S3xD4) | 288,662 |
C6.183(S3xD4) = C3xDic3:5D4 | central extension (φ=1) | 96 | | C6.183(S3xD4) | 288,664 |
C6.184(S3xD4) = C3xD6.D4 | central extension (φ=1) | 96 | | C6.184(S3xD4) | 288,665 |
C6.185(S3xD4) = C3xC12:D4 | central extension (φ=1) | 96 | | C6.185(S3xD4) | 288,666 |
C6.186(S3xD4) = C3xD6:Q8 | central extension (φ=1) | 96 | | C6.186(S3xD4) | 288,667 |
C6.187(S3xD4) = C3xS3xD8 | central extension (φ=1) | 48 | 4 | C6.187(S3xD4) | 288,681 |
C6.188(S3xD4) = C3xD8:S3 | central extension (φ=1) | 48 | 4 | C6.188(S3xD4) | 288,682 |
C6.189(S3xD4) = C3xD8:3S3 | central extension (φ=1) | 48 | 4 | C6.189(S3xD4) | 288,683 |
C6.190(S3xD4) = C3xS3xSD16 | central extension (φ=1) | 48 | 4 | C6.190(S3xD4) | 288,684 |
C6.191(S3xD4) = C3xQ8:3D6 | central extension (φ=1) | 48 | 4 | C6.191(S3xD4) | 288,685 |
C6.192(S3xD4) = C3xD4.D6 | central extension (φ=1) | 48 | 4 | C6.192(S3xD4) | 288,686 |
C6.193(S3xD4) = C3xQ8.7D6 | central extension (φ=1) | 48 | 4 | C6.193(S3xD4) | 288,687 |
C6.194(S3xD4) = C3xS3xQ16 | central extension (φ=1) | 96 | 4 | C6.194(S3xD4) | 288,688 |
C6.195(S3xD4) = C3xQ16:S3 | central extension (φ=1) | 96 | 4 | C6.195(S3xD4) | 288,689 |
C6.196(S3xD4) = C3xD24:C2 | central extension (φ=1) | 96 | 4 | C6.196(S3xD4) | 288,690 |
C6.197(S3xD4) = C3xD4xDic3 | central extension (φ=1) | 48 | | C6.197(S3xD4) | 288,705 |
C6.198(S3xD4) = C3xC23:2D6 | central extension (φ=1) | 48 | | C6.198(S3xD4) | 288,708 |
C6.199(S3xD4) = C3xD6:3D4 | central extension (φ=1) | 48 | | C6.199(S3xD4) | 288,709 |
C6.200(S3xD4) = C3xC23.14D6 | central extension (φ=1) | 48 | | C6.200(S3xD4) | 288,710 |
C6.201(S3xD4) = C3xC12:3D4 | central extension (φ=1) | 48 | | C6.201(S3xD4) | 288,711 |