Copied to
clipboard

G = C62.95C23order 288 = 25·32

90th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.95C23, Dic3220C2, C23.10S32, C6.67(S3×D4), C6.D43S3, C3⋊Dic3.25D4, (C22×C6).62D6, C6.58(C4○D12), C6.D129C2, (C2×Dic3).79D6, C329(C4.4D4), C6.45(D42S3), C2.27(Dic3⋊D6), (C2×C62).14C22, C34(C23.11D6), C2.20(D6.3D6), (C6×Dic3).22C22, C22.129(C2×S32), (C2×C322Q8)⋊6C2, (C3×C6).145(C2×D4), (C3×C6).72(C4○D4), (C2×C327D4).6C2, (C3×C6.D4)⋊11C2, (C2×C6).114(C22×S3), (C22×C3⋊S3).29C22, (C2×C3⋊Dic3).59C22, SmallGroup(288,601)

Series: Derived Chief Lower central Upper central

C1C62 — C62.95C23
C1C3C32C3×C6C62C6×Dic3Dic32 — C62.95C23
C32C62 — C62.95C23
C1C22C23

Generators and relations for C62.95C23
 G = < a,b,c,d,e | a6=b6=e2=1, c2=b3, d2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=a3c, ede=b3d >

Subgroups: 770 in 179 conjugacy classes, 46 normal (14 characteristic)
C1, C2, C2 [×2], C2 [×2], C3 [×2], C3, C4 [×6], C22, C22 [×6], S3 [×4], C6 [×6], C6 [×7], C2×C4 [×5], D4 [×2], Q8 [×2], C23, C23, C32, Dic3 [×10], C12 [×4], D6 [×10], C2×C6 [×2], C2×C6 [×11], C42, C22⋊C4 [×4], C2×D4, C2×Q8, C3⋊S3, C3×C6, C3×C6 [×2], C3×C6, Dic6 [×4], C2×Dic3 [×4], C2×Dic3 [×3], C3⋊D4 [×8], C2×C12 [×4], C22×S3 [×3], C22×C6 [×2], C22×C6, C4.4D4, C3×Dic3 [×4], C3⋊Dic3 [×2], C2×C3⋊S3 [×3], C62, C62 [×3], C4×Dic3 [×2], D6⋊C4 [×4], C6.D4 [×2], C3×C22⋊C4 [×2], C2×Dic6 [×2], C2×C3⋊D4 [×3], C322Q8 [×2], C6×Dic3 [×4], C2×C3⋊Dic3, C327D4 [×2], C22×C3⋊S3, C2×C62, C23.11D6 [×2], Dic32, C6.D12 [×2], C3×C6.D4 [×2], C2×C322Q8, C2×C327D4, C62.95C23
Quotients: C1, C2 [×7], C22 [×7], S3 [×2], D4 [×2], C23, D6 [×6], C2×D4, C4○D4 [×2], C22×S3 [×2], C4.4D4, S32, C4○D12 [×2], S3×D4 [×2], D42S3 [×2], C2×S32, C23.11D6 [×2], D6.3D6 [×2], Dic3⋊D6, C62.95C23

Smallest permutation representation of C62.95C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 15 3 17 5 13)(2 16 4 18 6 14)(7 44 11 48 9 46)(8 45 12 43 10 47)(19 29 21 25 23 27)(20 30 22 26 24 28)(31 37 35 41 33 39)(32 38 36 42 34 40)
(1 48 17 7)(2 43 18 8)(3 44 13 9)(4 45 14 10)(5 46 15 11)(6 47 16 12)(19 38 25 34)(20 39 26 35)(21 40 27 36)(22 41 28 31)(23 42 29 32)(24 37 30 33)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 36)(8 31)(9 32)(10 33)(11 34)(12 35)(13 26)(14 27)(15 28)(16 29)(17 30)(18 25)(37 45)(38 46)(39 47)(40 48)(41 43)(42 44)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,3,17,5,13)(2,16,4,18,6,14)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,29,21,25,23,27)(20,30,22,26,24,28)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,48,17,7)(2,43,18,8)(3,44,13,9)(4,45,14,10)(5,46,15,11)(6,47,16,12)(19,38,25,34)(20,39,26,35)(21,40,27,36)(22,41,28,31)(23,42,29,32)(24,37,30,33), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,3,17,5,13)(2,16,4,18,6,14)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,29,21,25,23,27)(20,30,22,26,24,28)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,48,17,7)(2,43,18,8)(3,44,13,9)(4,45,14,10)(5,46,15,11)(6,47,16,12)(19,38,25,34)(20,39,26,35)(21,40,27,36)(22,41,28,31)(23,42,29,32)(24,37,30,33), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,36)(8,31)(9,32)(10,33)(11,34)(12,35)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(37,45)(38,46)(39,47)(40,48)(41,43)(42,44) );

G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,15,3,17,5,13),(2,16,4,18,6,14),(7,44,11,48,9,46),(8,45,12,43,10,47),(19,29,21,25,23,27),(20,30,22,26,24,28),(31,37,35,41,33,39),(32,38,36,42,34,40)], [(1,48,17,7),(2,43,18,8),(3,44,13,9),(4,45,14,10),(5,46,15,11),(6,47,16,12),(19,38,25,34),(20,39,26,35),(21,40,27,36),(22,41,28,31),(23,42,29,32),(24,37,30,33)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,36),(8,31),(9,32),(10,33),(11,34),(12,35),(13,26),(14,27),(15,28),(16,29),(17,30),(18,25),(37,45),(38,46),(39,47),(40,48),(41,43),(42,44)])

42 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F4G4H6A···6F6G···6Q12A···12H
order122222333444444446···66···612···12
size11114362246666121218182···24···412···12

42 irreducible representations

dim111111222222444444
type++++++++++++-++
imageC1C2C2C2C2C2S3D4D6D6C4○D4C4○D12S32S3×D4D42S3C2×S32D6.3D6Dic3⋊D6
kernelC62.95C23Dic32C6.D12C3×C6.D4C2×C322Q8C2×C327D4C6.D4C3⋊Dic3C2×Dic3C22×C6C3×C6C6C23C6C6C22C2C2
# reps112211224248122142

Matrix representation of C62.95C23 in GL8(𝔽13)

10000000
01000000
001200000
000120000
00001000
00000100
000000121
000000120
,
120000000
012000000
001200000
000120000
000012100
000012000
00000010
00000001
,
50000000
05000000
00010000
001200000
000001200
000012000
00000010
00000001
,
82000000
15000000
00010000
001200000
000012000
000001200
00000001
00000010
,
123000000
01000000
001200000
00010000
00001000
00000100
00000010
00000001

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,1,0,0,0,0,0,0,2,5,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[12,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C62.95C23 in GAP, Magma, Sage, TeX

C_6^2._{95}C_2^3
% in TeX

G:=Group("C6^2.95C2^3");
// GroupNames label

G:=SmallGroup(288,601);
// by ID

G=gap.SmallGroup(288,601);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,64,254,219,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=e^2=1,c^2=b^3,d^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*c,e*d*e=b^3*d>;
// generators/relations

׿
×
𝔽