Copied to
clipboard

?

G = C10.432+ (1+4)order 320 = 26·5

43rd non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.432+ (1+4), C4⋊D417D5, C202D423C2, C4⋊C4.182D10, (D4×Dic5)⋊22C2, (C2×D4).156D10, C22⋊C4.49D10, C4.Dic1019C2, Dic54D411C2, D10.53(C4○D4), C20.203(C4○D4), C4.96(D42D5), (C2×C10).158C24, (C2×C20).596C23, (C22×C4).225D10, C2.45(D46D10), C23.18(C22×D5), (D4×C10).124C22, C23.D1019C2, C4⋊Dic5.372C22, (C22×C10).25C23, (C2×Dic5).77C23, C22.179(C23×D5), C23.D5.26C22, C23.21D1026C2, C23.18D1011C2, (C22×C20).243C22, C57(C22.47C24), (C4×Dic5).104C22, (C22×D5).201C23, D10⋊C4.127C22, C10.D4.139C22, (C22×Dic5).111C22, (D5×C4⋊C4)⋊23C2, (C4×C5⋊D4)⋊19C2, C2.42(D5×C4○D4), (C5×C4⋊D4)⋊20C2, (C2×C4×D5).95C22, C10.155(C2×C4○D4), C2.38(C2×D42D5), (C2×C4).40(C22×D5), (C5×C4⋊C4).146C22, (C2×C5⋊D4).31C22, (C5×C22⋊C4).15C22, SmallGroup(320,1286)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.432+ (1+4)
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — C10.432+ (1+4)
C5C2×C10 — C10.432+ (1+4)

Subgroups: 790 in 238 conjugacy classes, 97 normal (43 characteristic)
C1, C2 [×3], C2 [×5], C4 [×2], C4 [×10], C22, C22 [×13], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×15], D4 [×10], C23, C23 [×2], C23, D5 [×2], C10 [×3], C10 [×3], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×9], C22×C4, C22×C4 [×5], C2×D4, C2×D4 [×2], C2×D4 [×3], Dic5 [×7], C20 [×2], C20 [×3], D10 [×2], D10 [×2], C2×C10, C2×C10 [×9], C2×C4⋊C4, C42⋊C2, C4×D4 [×4], C4⋊D4, C4⋊D4 [×3], C22.D4 [×2], C42.C2, C422C2 [×2], C4×D5 [×4], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×2], C5⋊D4 [×6], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×D5, C22×C10, C22×C10 [×2], C22.47C24, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×4], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4, C23.D5, C23.D5 [×6], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×C4×D5, C2×C4×D5 [×2], C22×Dic5 [×2], C2×C5⋊D4, C2×C5⋊D4 [×2], C22×C20, D4×C10, D4×C10 [×2], C23.D10 [×2], Dic54D4 [×2], C4.Dic10, D5×C4⋊C4, C23.21D10, C4×C5⋊D4, D4×Dic5, C23.18D10 [×2], C202D4, C202D4 [×2], C5×C4⋊D4, C10.432+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2+ (1+4), C22×D5 [×7], C22.47C24, D42D5 [×2], C23×D5, C2×D42D5, D46D10, D5×C4○D4, C10.432+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=c2=1, d2=a5b2, e2=a5, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc=a5b-1, bd=db, ebe-1=a5b, cd=dc, ece-1=a5c, ede-1=b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 16 25 157)(2 15 26 156)(3 14 27 155)(4 13 28 154)(5 12 29 153)(6 11 30 152)(7 20 21 151)(8 19 22 160)(9 18 23 159)(10 17 24 158)(31 138 44 141)(32 137 45 150)(33 136 46 149)(34 135 47 148)(35 134 48 147)(36 133 49 146)(37 132 50 145)(38 131 41 144)(39 140 42 143)(40 139 43 142)(51 121 64 118)(52 130 65 117)(53 129 66 116)(54 128 67 115)(55 127 68 114)(56 126 69 113)(57 125 70 112)(58 124 61 111)(59 123 62 120)(60 122 63 119)(71 98 84 101)(72 97 85 110)(73 96 86 109)(74 95 87 108)(75 94 88 107)(76 93 89 106)(77 92 90 105)(78 91 81 104)(79 100 82 103)(80 99 83 102)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 31)(11 150)(12 141)(13 142)(14 143)(15 144)(16 145)(17 146)(18 147)(19 148)(20 149)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)(61 86)(62 87)(63 88)(64 89)(65 90)(66 81)(67 82)(68 83)(69 84)(70 85)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 156)(132 157)(133 158)(134 159)(135 160)(136 151)(137 152)(138 153)(139 154)(140 155)
(1 130 30 112)(2 121 21 113)(3 122 22 114)(4 123 23 115)(5 124 24 116)(6 125 25 117)(7 126 26 118)(8 127 27 119)(9 128 28 120)(10 129 29 111)(11 70 157 52)(12 61 158 53)(13 62 159 54)(14 63 160 55)(15 64 151 56)(16 65 152 57)(17 66 153 58)(18 67 154 59)(19 68 155 60)(20 69 156 51)(31 109 49 91)(32 110 50 92)(33 101 41 93)(34 102 42 94)(35 103 43 95)(36 104 44 96)(37 105 45 97)(38 106 46 98)(39 107 47 99)(40 108 48 100)(71 144 89 136)(72 145 90 137)(73 146 81 138)(74 147 82 139)(75 148 83 140)(76 149 84 131)(77 150 85 132)(78 141 86 133)(79 142 87 134)(80 143 88 135)
(1 145 6 150)(2 146 7 141)(3 147 8 142)(4 148 9 143)(5 149 10 144)(11 37 16 32)(12 38 17 33)(13 39 18 34)(14 40 19 35)(15 31 20 36)(21 138 26 133)(22 139 27 134)(23 140 28 135)(24 131 29 136)(25 132 30 137)(41 158 46 153)(42 159 47 154)(43 160 48 155)(44 151 49 156)(45 152 50 157)(51 109 56 104)(52 110 57 105)(53 101 58 106)(54 102 59 107)(55 103 60 108)(61 93 66 98)(62 94 67 99)(63 95 68 100)(64 96 69 91)(65 97 70 92)(71 129 76 124)(72 130 77 125)(73 121 78 126)(74 122 79 127)(75 123 80 128)(81 113 86 118)(82 114 87 119)(83 115 88 120)(84 116 89 111)(85 117 90 112)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,25,157)(2,15,26,156)(3,14,27,155)(4,13,28,154)(5,12,29,153)(6,11,30,152)(7,20,21,151)(8,19,22,160)(9,18,23,159)(10,17,24,158)(31,138,44,141)(32,137,45,150)(33,136,46,149)(34,135,47,148)(35,134,48,147)(36,133,49,146)(37,132,50,145)(38,131,41,144)(39,140,42,143)(40,139,43,142)(51,121,64,118)(52,130,65,117)(53,129,66,116)(54,128,67,115)(55,127,68,114)(56,126,69,113)(57,125,70,112)(58,124,61,111)(59,123,62,120)(60,122,63,119)(71,98,84,101)(72,97,85,110)(73,96,86,109)(74,95,87,108)(75,94,88,107)(76,93,89,106)(77,92,90,105)(78,91,81,104)(79,100,82,103)(80,99,83,102), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,31)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155), (1,130,30,112)(2,121,21,113)(3,122,22,114)(4,123,23,115)(5,124,24,116)(6,125,25,117)(7,126,26,118)(8,127,27,119)(9,128,28,120)(10,129,29,111)(11,70,157,52)(12,61,158,53)(13,62,159,54)(14,63,160,55)(15,64,151,56)(16,65,152,57)(17,66,153,58)(18,67,154,59)(19,68,155,60)(20,69,156,51)(31,109,49,91)(32,110,50,92)(33,101,41,93)(34,102,42,94)(35,103,43,95)(36,104,44,96)(37,105,45,97)(38,106,46,98)(39,107,47,99)(40,108,48,100)(71,144,89,136)(72,145,90,137)(73,146,81,138)(74,147,82,139)(75,148,83,140)(76,149,84,131)(77,150,85,132)(78,141,86,133)(79,142,87,134)(80,143,88,135), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,37,16,32)(12,38,17,33)(13,39,18,34)(14,40,19,35)(15,31,20,36)(21,138,26,133)(22,139,27,134)(23,140,28,135)(24,131,29,136)(25,132,30,137)(41,158,46,153)(42,159,47,154)(43,160,48,155)(44,151,49,156)(45,152,50,157)(51,109,56,104)(52,110,57,105)(53,101,58,106)(54,102,59,107)(55,103,60,108)(61,93,66,98)(62,94,67,99)(63,95,68,100)(64,96,69,91)(65,97,70,92)(71,129,76,124)(72,130,77,125)(73,121,78,126)(74,122,79,127)(75,123,80,128)(81,113,86,118)(82,114,87,119)(83,115,88,120)(84,116,89,111)(85,117,90,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,25,157)(2,15,26,156)(3,14,27,155)(4,13,28,154)(5,12,29,153)(6,11,30,152)(7,20,21,151)(8,19,22,160)(9,18,23,159)(10,17,24,158)(31,138,44,141)(32,137,45,150)(33,136,46,149)(34,135,47,148)(35,134,48,147)(36,133,49,146)(37,132,50,145)(38,131,41,144)(39,140,42,143)(40,139,43,142)(51,121,64,118)(52,130,65,117)(53,129,66,116)(54,128,67,115)(55,127,68,114)(56,126,69,113)(57,125,70,112)(58,124,61,111)(59,123,62,120)(60,122,63,119)(71,98,84,101)(72,97,85,110)(73,96,86,109)(74,95,87,108)(75,94,88,107)(76,93,89,106)(77,92,90,105)(78,91,81,104)(79,100,82,103)(80,99,83,102), (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,31)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75)(61,86)(62,87)(63,88)(64,89)(65,90)(66,81)(67,82)(68,83)(69,84)(70,85)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,156)(132,157)(133,158)(134,159)(135,160)(136,151)(137,152)(138,153)(139,154)(140,155), (1,130,30,112)(2,121,21,113)(3,122,22,114)(4,123,23,115)(5,124,24,116)(6,125,25,117)(7,126,26,118)(8,127,27,119)(9,128,28,120)(10,129,29,111)(11,70,157,52)(12,61,158,53)(13,62,159,54)(14,63,160,55)(15,64,151,56)(16,65,152,57)(17,66,153,58)(18,67,154,59)(19,68,155,60)(20,69,156,51)(31,109,49,91)(32,110,50,92)(33,101,41,93)(34,102,42,94)(35,103,43,95)(36,104,44,96)(37,105,45,97)(38,106,46,98)(39,107,47,99)(40,108,48,100)(71,144,89,136)(72,145,90,137)(73,146,81,138)(74,147,82,139)(75,148,83,140)(76,149,84,131)(77,150,85,132)(78,141,86,133)(79,142,87,134)(80,143,88,135), (1,145,6,150)(2,146,7,141)(3,147,8,142)(4,148,9,143)(5,149,10,144)(11,37,16,32)(12,38,17,33)(13,39,18,34)(14,40,19,35)(15,31,20,36)(21,138,26,133)(22,139,27,134)(23,140,28,135)(24,131,29,136)(25,132,30,137)(41,158,46,153)(42,159,47,154)(43,160,48,155)(44,151,49,156)(45,152,50,157)(51,109,56,104)(52,110,57,105)(53,101,58,106)(54,102,59,107)(55,103,60,108)(61,93,66,98)(62,94,67,99)(63,95,68,100)(64,96,69,91)(65,97,70,92)(71,129,76,124)(72,130,77,125)(73,121,78,126)(74,122,79,127)(75,123,80,128)(81,113,86,118)(82,114,87,119)(83,115,88,120)(84,116,89,111)(85,117,90,112) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,16,25,157),(2,15,26,156),(3,14,27,155),(4,13,28,154),(5,12,29,153),(6,11,30,152),(7,20,21,151),(8,19,22,160),(9,18,23,159),(10,17,24,158),(31,138,44,141),(32,137,45,150),(33,136,46,149),(34,135,47,148),(35,134,48,147),(36,133,49,146),(37,132,50,145),(38,131,41,144),(39,140,42,143),(40,139,43,142),(51,121,64,118),(52,130,65,117),(53,129,66,116),(54,128,67,115),(55,127,68,114),(56,126,69,113),(57,125,70,112),(58,124,61,111),(59,123,62,120),(60,122,63,119),(71,98,84,101),(72,97,85,110),(73,96,86,109),(74,95,87,108),(75,94,88,107),(76,93,89,106),(77,92,90,105),(78,91,81,104),(79,100,82,103),(80,99,83,102)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,31),(11,150),(12,141),(13,142),(14,143),(15,144),(16,145),(17,146),(18,147),(19,148),(20,149),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75),(61,86),(62,87),(63,88),(64,89),(65,90),(66,81),(67,82),(68,83),(69,84),(70,85),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,156),(132,157),(133,158),(134,159),(135,160),(136,151),(137,152),(138,153),(139,154),(140,155)], [(1,130,30,112),(2,121,21,113),(3,122,22,114),(4,123,23,115),(5,124,24,116),(6,125,25,117),(7,126,26,118),(8,127,27,119),(9,128,28,120),(10,129,29,111),(11,70,157,52),(12,61,158,53),(13,62,159,54),(14,63,160,55),(15,64,151,56),(16,65,152,57),(17,66,153,58),(18,67,154,59),(19,68,155,60),(20,69,156,51),(31,109,49,91),(32,110,50,92),(33,101,41,93),(34,102,42,94),(35,103,43,95),(36,104,44,96),(37,105,45,97),(38,106,46,98),(39,107,47,99),(40,108,48,100),(71,144,89,136),(72,145,90,137),(73,146,81,138),(74,147,82,139),(75,148,83,140),(76,149,84,131),(77,150,85,132),(78,141,86,133),(79,142,87,134),(80,143,88,135)], [(1,145,6,150),(2,146,7,141),(3,147,8,142),(4,148,9,143),(5,149,10,144),(11,37,16,32),(12,38,17,33),(13,39,18,34),(14,40,19,35),(15,31,20,36),(21,138,26,133),(22,139,27,134),(23,140,28,135),(24,131,29,136),(25,132,30,137),(41,158,46,153),(42,159,47,154),(43,160,48,155),(44,151,49,156),(45,152,50,157),(51,109,56,104),(52,110,57,105),(53,101,58,106),(54,102,59,107),(55,103,60,108),(61,93,66,98),(62,94,67,99),(63,95,68,100),(64,96,69,91),(65,97,70,92),(71,129,76,124),(72,130,77,125),(73,121,78,126),(74,122,79,127),(75,123,80,128),(81,113,86,118),(82,114,87,119),(83,115,88,120),(84,116,89,111),(85,117,90,112)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0003500
0073400
0000400
0000040
,
0320000
3200000
0074000
0073400
0000400
0000401
,
010000
100000
001000
000100
0000139
0000040
,
0400000
4000000
0040000
0004000
000090
000009
,
3200000
090000
0040000
0004000
0000139
0000140

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,7,7,0,0,0,0,40,34,0,0,0,0,0,0,40,40,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,39,40],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,39,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G···4L4M4N4O4P5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order1222222224444444···444445510···10101010101010101020···2020202020
size1111444101022224410···1020202020222···2444488884···48888

53 irreducible representations

dim1111111111122222224444
type+++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10D102+ (1+4)D42D5D46D10D5×C4○D4
kernelC10.432+ (1+4)C23.D10Dic54D4C4.Dic10D5×C4⋊C4C23.21D10C4×C5⋊D4D4×Dic5C23.18D10C202D4C5×C4⋊D4C4⋊D4C20D10C22⋊C4C4⋊C4C22×C4C2×D4C10C4C2C2
# reps1221111123124442261444

In GAP, Magma, Sage, TeX

C_{10}._{43}2_+^{(1+4)}
% in TeX

G:=Group("C10.43ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1286);
// by ID

G=gap.SmallGroup(320,1286);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,100,1571,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=a^5*b^2,e^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=a^5*b^-1,b*d=d*b,e*b*e^-1=a^5*b,c*d=d*c,e*c*e^-1=a^5*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽