metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.442+ (1+4), C4⋊D4⋊18D5, C4⋊C4.92D10, C20⋊D4⋊18C2, C20⋊2D4⋊24C2, (C2×D4).93D10, D10⋊D4⋊22C2, C22⋊C4.50D10, Dic5⋊D4⋊31C2, Dic5⋊4D4⋊12C2, (C2×C10).159C24, (C2×C20).597C23, (C22×C4).226D10, D10.13D4⋊13C2, D10.12D4⋊21C2, C2.46(D4⋊6D10), C23.19(C22×D5), Dic5.11(C4○D4), Dic5.Q8⋊13C2, (D4×C10).125C22, (C2×D20).150C22, C23.11D10⋊6C2, C4⋊Dic5.208C22, (C22×C10).26C23, (C2×Dic5).78C23, (C22×D5).66C23, C22.180(C23×D5), C23.D5.27C22, D10⋊C4.71C22, C23.18D10⋊12C2, C23.23D10⋊23C2, (C22×C20).379C22, C5⋊3(C22.34C24), (C4×Dic5).231C22, C10.D4.160C22, (C22×Dic5).112C22, (C4×C5⋊D4)⋊56C2, C2.43(D5×C4○D4), (C5×C4⋊D4)⋊21C2, C10.156(C2×C4○D4), (C2×C4×D5).260C22, (C5×C4⋊C4).147C22, (C2×C4).179(C22×D5), (C2×C5⋊D4).32C22, (C5×C22⋊C4).16C22, SmallGroup(320,1287)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 910 in 240 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×5], C4 [×11], C22, C22 [×15], C5, C2×C4 [×4], C2×C4 [×12], D4 [×12], C23 [×3], C23 [×2], D5 [×2], C10 [×3], C10 [×3], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×7], C22×C4, C22×C4 [×4], C2×D4 [×3], C2×D4 [×7], Dic5 [×2], Dic5 [×5], C20 [×4], D10 [×6], C2×C10, C2×C10 [×9], C42⋊C2, C4×D4 [×2], C4⋊D4, C4⋊D4 [×5], C22.D4 [×4], C42.C2, C4⋊1D4, C4×D5 [×2], D20, C2×Dic5 [×6], C2×Dic5 [×3], C5⋊D4 [×8], C2×C20 [×4], C2×C20, C5×D4 [×3], C22×D5 [×2], C22×C10 [×3], C22.34C24, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5, D10⋊C4 [×4], C23.D5 [×4], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×C4×D5 [×2], C2×D20, C22×Dic5 [×2], C2×C5⋊D4 [×6], C22×C20, D4×C10 [×3], C23.11D10, Dic5⋊4D4, D10.12D4, D10⋊D4, Dic5.Q8, D10.13D4, C4×C5⋊D4, C23.23D10, C23.18D10, C20⋊2D4, Dic5⋊D4 [×3], C20⋊D4, C5×C4⋊D4, C10.442+ (1+4)
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D5 [×7], C22.34C24, C23×D5, D4⋊6D10 [×2], D5×C4○D4, C10.442+ (1+4)
Generators and relations
G = < a,b,c,d,e | a10=b4=1, c2=e2=a5, d2=b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=a5b-1, bd=db, ebe-1=a5b, cd=dc, ce=ec, ede-1=a5b2d >
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 138 18 123)(2 139 19 124)(3 140 20 125)(4 131 11 126)(5 132 12 127)(6 133 13 128)(7 134 14 129)(8 135 15 130)(9 136 16 121)(10 137 17 122)(21 156 36 141)(22 157 37 142)(23 158 38 143)(24 159 39 144)(25 160 40 145)(26 151 31 146)(27 152 32 147)(28 153 33 148)(29 154 34 149)(30 155 35 150)(41 96 56 81)(42 97 57 82)(43 98 58 83)(44 99 59 84)(45 100 60 85)(46 91 51 86)(47 92 52 87)(48 93 53 88)(49 94 54 89)(50 95 55 90)(61 116 76 101)(62 117 77 102)(63 118 78 103)(64 119 79 104)(65 120 80 105)(66 111 71 106)(67 112 72 107)(68 113 73 108)(69 114 74 109)(70 115 75 110)
(1 88 6 83)(2 89 7 84)(3 90 8 85)(4 81 9 86)(5 82 10 87)(11 96 16 91)(12 97 17 92)(13 98 18 93)(14 99 19 94)(15 100 20 95)(21 106 26 101)(22 107 27 102)(23 108 28 103)(24 109 29 104)(25 110 30 105)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)
(1 38 18 23)(2 37 19 22)(3 36 20 21)(4 35 11 30)(5 34 12 29)(6 33 13 28)(7 32 14 27)(8 31 15 26)(9 40 16 25)(10 39 17 24)(41 80 56 65)(42 79 57 64)(43 78 58 63)(44 77 59 62)(45 76 60 61)(46 75 51 70)(47 74 52 69)(48 73 53 68)(49 72 54 67)(50 71 55 66)(81 120 96 105)(82 119 97 104)(83 118 98 103)(84 117 99 102)(85 116 100 101)(86 115 91 110)(87 114 92 109)(88 113 93 108)(89 112 94 107)(90 111 95 106)(121 160 136 145)(122 159 137 144)(123 158 138 143)(124 157 139 142)(125 156 140 141)(126 155 131 150)(127 154 132 149)(128 153 133 148)(129 152 134 147)(130 151 135 146)
(1 28 6 23)(2 29 7 24)(3 30 8 25)(4 21 9 26)(5 22 10 27)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 61 46 66)(42 62 47 67)(43 63 48 68)(44 64 49 69)(45 65 50 70)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(81 106 86 101)(82 107 87 102)(83 108 88 103)(84 109 89 104)(85 110 90 105)(91 116 96 111)(92 117 97 112)(93 118 98 113)(94 119 99 114)(95 120 100 115)(121 141 126 146)(122 142 127 147)(123 143 128 148)(124 144 129 149)(125 145 130 150)(131 151 136 156)(132 152 137 157)(133 153 138 158)(134 154 139 159)(135 155 140 160)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,18,123)(2,139,19,124)(3,140,20,125)(4,131,11,126)(5,132,12,127)(6,133,13,128)(7,134,14,129)(8,135,15,130)(9,136,16,121)(10,137,17,122)(21,156,36,141)(22,157,37,142)(23,158,38,143)(24,159,39,144)(25,160,40,145)(26,151,31,146)(27,152,32,147)(28,153,33,148)(29,154,34,149)(30,155,35,150)(41,96,56,81)(42,97,57,82)(43,98,58,83)(44,99,59,84)(45,100,60,85)(46,91,51,86)(47,92,52,87)(48,93,53,88)(49,94,54,89)(50,95,55,90)(61,116,76,101)(62,117,77,102)(63,118,78,103)(64,119,79,104)(65,120,80,105)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,28,6,23)(2,29,7,24)(3,30,8,25)(4,21,9,26)(5,22,10,27)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,106,86,101)(82,107,87,102)(83,108,88,103)(84,109,89,104)(85,110,90,105)(91,116,96,111)(92,117,97,112)(93,118,98,113)(94,119,99,114)(95,120,100,115)(121,141,126,146)(122,142,127,147)(123,143,128,148)(124,144,129,149)(125,145,130,150)(131,151,136,156)(132,152,137,157)(133,153,138,158)(134,154,139,159)(135,155,140,160)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,138,18,123)(2,139,19,124)(3,140,20,125)(4,131,11,126)(5,132,12,127)(6,133,13,128)(7,134,14,129)(8,135,15,130)(9,136,16,121)(10,137,17,122)(21,156,36,141)(22,157,37,142)(23,158,38,143)(24,159,39,144)(25,160,40,145)(26,151,31,146)(27,152,32,147)(28,153,33,148)(29,154,34,149)(30,155,35,150)(41,96,56,81)(42,97,57,82)(43,98,58,83)(44,99,59,84)(45,100,60,85)(46,91,51,86)(47,92,52,87)(48,93,53,88)(49,94,54,89)(50,95,55,90)(61,116,76,101)(62,117,77,102)(63,118,78,103)(64,119,79,104)(65,120,80,105)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110), (1,88,6,83)(2,89,7,84)(3,90,8,85)(4,81,9,86)(5,82,10,87)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,106,26,101)(22,107,27,102)(23,108,28,103)(24,109,29,104)(25,110,30,105)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155), (1,38,18,23)(2,37,19,22)(3,36,20,21)(4,35,11,30)(5,34,12,29)(6,33,13,28)(7,32,14,27)(8,31,15,26)(9,40,16,25)(10,39,17,24)(41,80,56,65)(42,79,57,64)(43,78,58,63)(44,77,59,62)(45,76,60,61)(46,75,51,70)(47,74,52,69)(48,73,53,68)(49,72,54,67)(50,71,55,66)(81,120,96,105)(82,119,97,104)(83,118,98,103)(84,117,99,102)(85,116,100,101)(86,115,91,110)(87,114,92,109)(88,113,93,108)(89,112,94,107)(90,111,95,106)(121,160,136,145)(122,159,137,144)(123,158,138,143)(124,157,139,142)(125,156,140,141)(126,155,131,150)(127,154,132,149)(128,153,133,148)(129,152,134,147)(130,151,135,146), (1,28,6,23)(2,29,7,24)(3,30,8,25)(4,21,9,26)(5,22,10,27)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,61,46,66)(42,62,47,67)(43,63,48,68)(44,64,49,69)(45,65,50,70)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(81,106,86,101)(82,107,87,102)(83,108,88,103)(84,109,89,104)(85,110,90,105)(91,116,96,111)(92,117,97,112)(93,118,98,113)(94,119,99,114)(95,120,100,115)(121,141,126,146)(122,142,127,147)(123,143,128,148)(124,144,129,149)(125,145,130,150)(131,151,136,156)(132,152,137,157)(133,153,138,158)(134,154,139,159)(135,155,140,160) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,138,18,123),(2,139,19,124),(3,140,20,125),(4,131,11,126),(5,132,12,127),(6,133,13,128),(7,134,14,129),(8,135,15,130),(9,136,16,121),(10,137,17,122),(21,156,36,141),(22,157,37,142),(23,158,38,143),(24,159,39,144),(25,160,40,145),(26,151,31,146),(27,152,32,147),(28,153,33,148),(29,154,34,149),(30,155,35,150),(41,96,56,81),(42,97,57,82),(43,98,58,83),(44,99,59,84),(45,100,60,85),(46,91,51,86),(47,92,52,87),(48,93,53,88),(49,94,54,89),(50,95,55,90),(61,116,76,101),(62,117,77,102),(63,118,78,103),(64,119,79,104),(65,120,80,105),(66,111,71,106),(67,112,72,107),(68,113,73,108),(69,114,74,109),(70,115,75,110)], [(1,88,6,83),(2,89,7,84),(3,90,8,85),(4,81,9,86),(5,82,10,87),(11,96,16,91),(12,97,17,92),(13,98,18,93),(14,99,19,94),(15,100,20,95),(21,106,26,101),(22,107,27,102),(23,108,28,103),(24,109,29,104),(25,110,30,105),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)], [(1,38,18,23),(2,37,19,22),(3,36,20,21),(4,35,11,30),(5,34,12,29),(6,33,13,28),(7,32,14,27),(8,31,15,26),(9,40,16,25),(10,39,17,24),(41,80,56,65),(42,79,57,64),(43,78,58,63),(44,77,59,62),(45,76,60,61),(46,75,51,70),(47,74,52,69),(48,73,53,68),(49,72,54,67),(50,71,55,66),(81,120,96,105),(82,119,97,104),(83,118,98,103),(84,117,99,102),(85,116,100,101),(86,115,91,110),(87,114,92,109),(88,113,93,108),(89,112,94,107),(90,111,95,106),(121,160,136,145),(122,159,137,144),(123,158,138,143),(124,157,139,142),(125,156,140,141),(126,155,131,150),(127,154,132,149),(128,153,133,148),(129,152,134,147),(130,151,135,146)], [(1,28,6,23),(2,29,7,24),(3,30,8,25),(4,21,9,26),(5,22,10,27),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,61,46,66),(42,62,47,67),(43,63,48,68),(44,64,49,69),(45,65,50,70),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(81,106,86,101),(82,107,87,102),(83,108,88,103),(84,109,89,104),(85,110,90,105),(91,116,96,111),(92,117,97,112),(93,118,98,113),(94,119,99,114),(95,120,100,115),(121,141,126,146),(122,142,127,147),(123,143,128,148),(124,144,129,149),(125,145,130,150),(131,151,136,156),(132,152,137,157),(133,153,138,158),(134,154,139,159),(135,155,140,160)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 6 | 6 | 0 | 0 |
| 0 | 0 | 35 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 6 | 6 |
| 0 | 0 | 0 | 0 | 35 | 1 |
| 9 | 36 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 39 | 28 | 17 | 0 |
| 0 | 0 | 13 | 2 | 0 | 17 |
| 0 | 0 | 17 | 0 | 2 | 13 |
| 0 | 0 | 0 | 17 | 28 | 39 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 18 | 35 |
| 0 | 0 | 0 | 0 | 6 | 23 |
| 0 | 0 | 23 | 6 | 0 | 0 |
| 0 | 0 | 35 | 18 | 0 | 0 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 6 | 40 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 6 | 40 | 0 | 0 |
| 32 | 0 | 0 | 0 | 0 | 0 |
| 25 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,6,35,0,0,0,0,6,1,0,0,0,0,0,0,6,35,0,0,0,0,6,1],[9,0,0,0,0,0,36,32,0,0,0,0,0,0,39,13,17,0,0,0,28,2,0,17,0,0,17,0,2,28,0,0,0,17,13,39],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,23,35,0,0,0,0,6,18,0,0,18,6,0,0,0,0,35,23,0,0],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,1,6,0,0,0,0,0,40,0,0,1,6,0,0,0,0,0,40,0,0],[32,25,0,0,0,0,0,9,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;
50 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 20 | 20 | 2 | 2 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
50 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | 2+ (1+4) | D4⋊6D10 | D5×C4○D4 |
| kernel | C10.442+ (1+4) | C23.11D10 | Dic5⋊4D4 | D10.12D4 | D10⋊D4 | Dic5.Q8 | D10.13D4 | C4×C5⋊D4 | C23.23D10 | C23.18D10 | C20⋊2D4 | Dic5⋊D4 | C20⋊D4 | C5×C4⋊D4 | C4⋊D4 | Dic5 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 6 | 2 | 8 | 4 |
In GAP, Magma, Sage, TeX
C_{10}._{44}2_+^{(1+4)} % in TeX
G:=Group("C10.44ES+(2,2)"); // GroupNames label
G:=SmallGroup(320,1287);
// by ID
G=gap.SmallGroup(320,1287);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,675,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=e^2=a^5,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=a^5*b^-1,b*d=d*b,e*b*e^-1=a^5*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations