Copied to
clipboard

?

G = D2012D4order 320 = 26·5

5th semidirect product of D20 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2012D4, C42.172D10, C10.352- (1+4), C4⋊Q810D5, C4.73(D4×D5), (C4×D20)⋊51C2, C207(C4○D4), C57(D46D4), C20.71(C2×D4), C42D2040C2, C4⋊C4.123D10, C42(Q82D5), D10.48(C2×D4), D103Q835C2, (C2×Q8).145D10, (C2×C20).103C23, (C2×C10).270C24, (C4×C20).211C22, C10.100(C22×D4), D10.13D446C2, (C2×D20).279C22, C4⋊Dic5.384C22, (Q8×C10).137C22, C22.291(C23×D5), (C2×Dic5).141C23, C10.D4.60C22, (C22×D5).241C23, D10⋊C4.151C22, C2.36(Q8.10D10), C2.73(C2×D4×D5), (D5×C4⋊C4)⋊44C2, (C5×C4⋊Q8)⋊12C2, (C2×Q82D5)⋊13C2, C10.121(C2×C4○D4), C2.28(C2×Q82D5), (C2×C4×D5).153C22, (C2×C4).93(C22×D5), (C5×C4⋊C4).213C22, SmallGroup(320,1398)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D2012D4
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D2012D4
C5C2×C10 — D2012D4

Subgroups: 1110 in 292 conjugacy classes, 107 normal (27 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×14], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×20], D4 [×14], Q8 [×4], C23 [×4], D5 [×6], C10 [×3], C42, C22⋊C4 [×8], C4⋊C4 [×4], C4⋊C4 [×6], C22×C4 [×8], C2×D4 [×6], C2×Q8 [×2], C4○D4 [×8], Dic5 [×4], C20 [×4], C20 [×5], D10 [×4], D10 [×10], C2×C10, C2×C4⋊C4 [×2], C4×D4 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×4], C4⋊Q8, C2×C4○D4 [×2], C4×D5 [×16], D20 [×4], D20 [×10], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×4], C22×D5 [×4], D46D4, C10.D4 [×4], C4⋊Dic5 [×2], D10⋊C4 [×8], C4×C20, C5×C4⋊C4 [×4], C2×C4×D5 [×8], C2×D20 [×2], C2×D20 [×4], Q82D5 [×8], Q8×C10 [×2], C4×D20 [×2], D5×C4⋊C4 [×2], D10.13D4 [×4], C42D20 [×2], D103Q8 [×2], C5×C4⋊Q8, C2×Q82D5 [×2], D2012D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2- (1+4), C22×D5 [×7], D46D4, D4×D5 [×2], Q82D5 [×2], C23×D5, C2×D4×D5, C2×Q82D5, Q8.10D10, D2012D4

Generators and relations
 G = < a,b,c,d | a20=b2=c4=d2=1, bab=a-1, ac=ca, dad=a9, bc=cb, dbd=a18b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 121)(2 140)(3 139)(4 138)(5 137)(6 136)(7 135)(8 134)(9 133)(10 132)(11 131)(12 130)(13 129)(14 128)(15 127)(16 126)(17 125)(18 124)(19 123)(20 122)(21 112)(22 111)(23 110)(24 109)(25 108)(26 107)(27 106)(28 105)(29 104)(30 103)(31 102)(32 101)(33 120)(34 119)(35 118)(36 117)(37 116)(38 115)(39 114)(40 113)(41 61)(42 80)(43 79)(44 78)(45 77)(46 76)(47 75)(48 74)(49 73)(50 72)(51 71)(52 70)(53 69)(54 68)(55 67)(56 66)(57 65)(58 64)(59 63)(60 62)(81 146)(82 145)(83 144)(84 143)(85 142)(86 141)(87 160)(88 159)(89 158)(90 157)(91 156)(92 155)(93 154)(94 153)(95 152)(96 151)(97 150)(98 149)(99 148)(100 147)
(1 69 117 156)(2 70 118 157)(3 71 119 158)(4 72 120 159)(5 73 101 160)(6 74 102 141)(7 75 103 142)(8 76 104 143)(9 77 105 144)(10 78 106 145)(11 79 107 146)(12 80 108 147)(13 61 109 148)(14 62 110 149)(15 63 111 150)(16 64 112 151)(17 65 113 152)(18 66 114 153)(19 67 115 154)(20 68 116 155)(21 96 126 58)(22 97 127 59)(23 98 128 60)(24 99 129 41)(25 100 130 42)(26 81 131 43)(27 82 132 44)(28 83 133 45)(29 84 134 46)(30 85 135 47)(31 86 136 48)(32 87 137 49)(33 88 138 50)(34 89 139 51)(35 90 140 52)(36 91 121 53)(37 92 122 54)(38 93 123 55)(39 94 124 56)(40 95 125 57)
(1 117)(2 106)(3 115)(4 104)(5 113)(6 102)(7 111)(8 120)(9 109)(10 118)(11 107)(12 116)(13 105)(14 114)(15 103)(16 112)(17 101)(18 110)(19 119)(20 108)(21 128)(22 137)(23 126)(24 135)(25 124)(26 133)(27 122)(28 131)(29 140)(30 129)(31 138)(32 127)(33 136)(34 125)(35 134)(36 123)(37 132)(38 121)(39 130)(40 139)(41 47)(42 56)(43 45)(44 54)(46 52)(48 50)(49 59)(51 57)(53 55)(58 60)(61 77)(62 66)(63 75)(65 73)(67 71)(68 80)(70 78)(72 76)(81 83)(82 92)(84 90)(85 99)(86 88)(87 97)(89 95)(91 93)(94 100)(96 98)(142 150)(143 159)(144 148)(145 157)(147 155)(149 153)(152 160)(154 158)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,112)(22,111)(23,110)(24,109)(25,108)(26,107)(27,106)(28,105)(29,104)(30,103)(31,102)(32,101)(33,120)(34,119)(35,118)(36,117)(37,116)(38,115)(39,114)(40,113)(41,61)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(81,146)(82,145)(83,144)(84,143)(85,142)(86,141)(87,160)(88,159)(89,158)(90,157)(91,156)(92,155)(93,154)(94,153)(95,152)(96,151)(97,150)(98,149)(99,148)(100,147), (1,69,117,156)(2,70,118,157)(3,71,119,158)(4,72,120,159)(5,73,101,160)(6,74,102,141)(7,75,103,142)(8,76,104,143)(9,77,105,144)(10,78,106,145)(11,79,107,146)(12,80,108,147)(13,61,109,148)(14,62,110,149)(15,63,111,150)(16,64,112,151)(17,65,113,152)(18,66,114,153)(19,67,115,154)(20,68,116,155)(21,96,126,58)(22,97,127,59)(23,98,128,60)(24,99,129,41)(25,100,130,42)(26,81,131,43)(27,82,132,44)(28,83,133,45)(29,84,134,46)(30,85,135,47)(31,86,136,48)(32,87,137,49)(33,88,138,50)(34,89,139,51)(35,90,140,52)(36,91,121,53)(37,92,122,54)(38,93,123,55)(39,94,124,56)(40,95,125,57), (1,117)(2,106)(3,115)(4,104)(5,113)(6,102)(7,111)(8,120)(9,109)(10,118)(11,107)(12,116)(13,105)(14,114)(15,103)(16,112)(17,101)(18,110)(19,119)(20,108)(21,128)(22,137)(23,126)(24,135)(25,124)(26,133)(27,122)(28,131)(29,140)(30,129)(31,138)(32,127)(33,136)(34,125)(35,134)(36,123)(37,132)(38,121)(39,130)(40,139)(41,47)(42,56)(43,45)(44,54)(46,52)(48,50)(49,59)(51,57)(53,55)(58,60)(61,77)(62,66)(63,75)(65,73)(67,71)(68,80)(70,78)(72,76)(81,83)(82,92)(84,90)(85,99)(86,88)(87,97)(89,95)(91,93)(94,100)(96,98)(142,150)(143,159)(144,148)(145,157)(147,155)(149,153)(152,160)(154,158)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,121)(2,140)(3,139)(4,138)(5,137)(6,136)(7,135)(8,134)(9,133)(10,132)(11,131)(12,130)(13,129)(14,128)(15,127)(16,126)(17,125)(18,124)(19,123)(20,122)(21,112)(22,111)(23,110)(24,109)(25,108)(26,107)(27,106)(28,105)(29,104)(30,103)(31,102)(32,101)(33,120)(34,119)(35,118)(36,117)(37,116)(38,115)(39,114)(40,113)(41,61)(42,80)(43,79)(44,78)(45,77)(46,76)(47,75)(48,74)(49,73)(50,72)(51,71)(52,70)(53,69)(54,68)(55,67)(56,66)(57,65)(58,64)(59,63)(60,62)(81,146)(82,145)(83,144)(84,143)(85,142)(86,141)(87,160)(88,159)(89,158)(90,157)(91,156)(92,155)(93,154)(94,153)(95,152)(96,151)(97,150)(98,149)(99,148)(100,147), (1,69,117,156)(2,70,118,157)(3,71,119,158)(4,72,120,159)(5,73,101,160)(6,74,102,141)(7,75,103,142)(8,76,104,143)(9,77,105,144)(10,78,106,145)(11,79,107,146)(12,80,108,147)(13,61,109,148)(14,62,110,149)(15,63,111,150)(16,64,112,151)(17,65,113,152)(18,66,114,153)(19,67,115,154)(20,68,116,155)(21,96,126,58)(22,97,127,59)(23,98,128,60)(24,99,129,41)(25,100,130,42)(26,81,131,43)(27,82,132,44)(28,83,133,45)(29,84,134,46)(30,85,135,47)(31,86,136,48)(32,87,137,49)(33,88,138,50)(34,89,139,51)(35,90,140,52)(36,91,121,53)(37,92,122,54)(38,93,123,55)(39,94,124,56)(40,95,125,57), (1,117)(2,106)(3,115)(4,104)(5,113)(6,102)(7,111)(8,120)(9,109)(10,118)(11,107)(12,116)(13,105)(14,114)(15,103)(16,112)(17,101)(18,110)(19,119)(20,108)(21,128)(22,137)(23,126)(24,135)(25,124)(26,133)(27,122)(28,131)(29,140)(30,129)(31,138)(32,127)(33,136)(34,125)(35,134)(36,123)(37,132)(38,121)(39,130)(40,139)(41,47)(42,56)(43,45)(44,54)(46,52)(48,50)(49,59)(51,57)(53,55)(58,60)(61,77)(62,66)(63,75)(65,73)(67,71)(68,80)(70,78)(72,76)(81,83)(82,92)(84,90)(85,99)(86,88)(87,97)(89,95)(91,93)(94,100)(96,98)(142,150)(143,159)(144,148)(145,157)(147,155)(149,153)(152,160)(154,158) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,121),(2,140),(3,139),(4,138),(5,137),(6,136),(7,135),(8,134),(9,133),(10,132),(11,131),(12,130),(13,129),(14,128),(15,127),(16,126),(17,125),(18,124),(19,123),(20,122),(21,112),(22,111),(23,110),(24,109),(25,108),(26,107),(27,106),(28,105),(29,104),(30,103),(31,102),(32,101),(33,120),(34,119),(35,118),(36,117),(37,116),(38,115),(39,114),(40,113),(41,61),(42,80),(43,79),(44,78),(45,77),(46,76),(47,75),(48,74),(49,73),(50,72),(51,71),(52,70),(53,69),(54,68),(55,67),(56,66),(57,65),(58,64),(59,63),(60,62),(81,146),(82,145),(83,144),(84,143),(85,142),(86,141),(87,160),(88,159),(89,158),(90,157),(91,156),(92,155),(93,154),(94,153),(95,152),(96,151),(97,150),(98,149),(99,148),(100,147)], [(1,69,117,156),(2,70,118,157),(3,71,119,158),(4,72,120,159),(5,73,101,160),(6,74,102,141),(7,75,103,142),(8,76,104,143),(9,77,105,144),(10,78,106,145),(11,79,107,146),(12,80,108,147),(13,61,109,148),(14,62,110,149),(15,63,111,150),(16,64,112,151),(17,65,113,152),(18,66,114,153),(19,67,115,154),(20,68,116,155),(21,96,126,58),(22,97,127,59),(23,98,128,60),(24,99,129,41),(25,100,130,42),(26,81,131,43),(27,82,132,44),(28,83,133,45),(29,84,134,46),(30,85,135,47),(31,86,136,48),(32,87,137,49),(33,88,138,50),(34,89,139,51),(35,90,140,52),(36,91,121,53),(37,92,122,54),(38,93,123,55),(39,94,124,56),(40,95,125,57)], [(1,117),(2,106),(3,115),(4,104),(5,113),(6,102),(7,111),(8,120),(9,109),(10,118),(11,107),(12,116),(13,105),(14,114),(15,103),(16,112),(17,101),(18,110),(19,119),(20,108),(21,128),(22,137),(23,126),(24,135),(25,124),(26,133),(27,122),(28,131),(29,140),(30,129),(31,138),(32,127),(33,136),(34,125),(35,134),(36,123),(37,132),(38,121),(39,130),(40,139),(41,47),(42,56),(43,45),(44,54),(46,52),(48,50),(49,59),(51,57),(53,55),(58,60),(61,77),(62,66),(63,75),(65,73),(67,71),(68,80),(70,78),(72,76),(81,83),(82,92),(84,90),(85,99),(86,88),(87,97),(89,95),(91,93),(94,100),(96,98),(142,150),(143,159),(144,148),(145,157),(147,155),(149,153),(152,160),(154,158)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
0014000
0083400
0000320
000029
,
100000
010000
001000
0084000
0000321
000029
,
1390000
1400000
0040000
0004000
000010
000001
,
4000000
4010000
0034100
0034700
000010
00001840

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,40,34,0,0,0,0,0,0,32,2,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,0,40,0,0,0,0,0,0,32,2,0,0,0,0,1,9],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,34,34,0,0,0,0,1,7,0,0,0,0,0,0,1,18,0,0,0,0,0,40] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4I4J4K4L4M4N4O5A5B10A···10F20A···20L20M···20T
order122222222244444···44444445510···1020···2020···20
size111110101010202022224···4101010102020222···24···48···8

53 irreducible representations

dim111111112222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2D4D5C4○D4D10D10D102- (1+4)D4×D5Q82D5Q8.10D10
kernelD2012D4C4×D20D5×C4⋊C4D10.13D4C42D20D103Q8C5×C4⋊Q8C2×Q82D5D20C4⋊Q8C20C42C4⋊C4C2×Q8C10C4C4C2
# reps122422124242841444

In GAP, Magma, Sage, TeX

D_{20}\rtimes_{12}D_4
% in TeX

G:=Group("D20:12D4");
// GroupNames label

G:=SmallGroup(320,1398);
// by ID

G=gap.SmallGroup(320,1398);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,268,1571,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,d*b*d=a^18*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽