Copied to
clipboard

?

G = D208Q8order 320 = 26·5

6th semidirect product of D20 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D208Q8, Dic1012D4, C42.173D10, C10.362- (1+4), C54(D4×Q8), C41(Q8×D5), C4⋊Q811D5, C203(C2×Q8), C20⋊Q844C2, D107(C2×Q8), C4.74(D4×D5), C20.72(C2×D4), C4⋊C4.218D10, (C4×D20).26C2, D10⋊Q848C2, D103Q836C2, (C4×Dic10)⋊52C2, (C2×Q8).146D10, Dic5.54(C2×D4), D208C4.13C2, C10.47(C22×Q8), (C2×C10).271C24, (C4×C20).212C22, (C2×C20).104C23, C10.101(C22×D4), (C2×D20).280C22, C4⋊Dic5.385C22, (Q8×C10).138C22, C22.292(C23×D5), (C2×Dic5).142C23, (C4×Dic5).168C22, (C22×D5).242C23, D10⋊C4.152C22, C2.37(Q8.10D10), (C2×Dic10).195C22, C10.D4.166C22, (C2×Q8×D5)⋊13C2, C2.74(C2×D4×D5), C2.30(C2×Q8×D5), (C5×C4⋊Q8)⋊13C2, (C2×C4×D5).154C22, (C5×C4⋊C4).214C22, (C2×C4).218(C22×D5), SmallGroup(320,1399)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D208Q8
C1C5C10C2×C10C22×D5C2×C4×D5C2×Q8×D5 — D208Q8
C5C2×C10 — D208Q8

Subgroups: 966 in 280 conjugacy classes, 115 normal (27 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×13], C22, C22 [×8], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×18], D4 [×4], Q8 [×16], C23 [×2], D5 [×4], C10 [×3], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×4], C4⋊C4 [×8], C22×C4 [×6], C2×D4, C2×Q8 [×2], C2×Q8 [×13], Dic5 [×4], Dic5 [×4], C20 [×4], C20 [×5], D10 [×4], D10 [×4], C2×C10, C4×D4 [×3], C4×Q8, C22⋊Q8 [×6], C4⋊Q8, C4⋊Q8 [×2], C22×Q8 [×2], Dic10 [×4], Dic10 [×8], C4×D5 [×12], D20 [×4], C2×Dic5 [×6], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×4], C22×D5 [×2], D4×Q8, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5 [×2], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×4], C2×Dic10, C2×Dic10 [×4], C2×C4×D5 [×6], C2×D20, Q8×D5 [×8], Q8×C10 [×2], C4×Dic10, C4×D20, C20⋊Q8 [×2], D208C4 [×2], D10⋊Q8 [×4], D103Q8 [×2], C5×C4⋊Q8, C2×Q8×D5 [×2], D208Q8

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], Q8 [×4], C23 [×15], D5, C2×D4 [×6], C2×Q8 [×6], C24, D10 [×7], C22×D4, C22×Q8, 2- (1+4), C22×D5 [×7], D4×Q8, D4×D5 [×2], Q8×D5 [×2], C23×D5, C2×D4×D5, C2×Q8×D5, Q8.10D10, D208Q8

Generators and relations
 G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a10b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 29)(22 28)(23 27)(24 26)(30 40)(31 39)(32 38)(33 37)(34 36)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(61 67)(62 66)(63 65)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(81 91)(82 90)(83 89)(84 88)(85 87)(92 100)(93 99)(94 98)(95 97)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)(121 131)(122 130)(123 129)(124 128)(125 127)(132 140)(133 139)(134 138)(135 137)(142 160)(143 159)(144 158)(145 157)(146 156)(147 155)(148 154)(149 153)(150 152)
(1 89 129 154)(2 90 130 155)(3 91 131 156)(4 92 132 157)(5 93 133 158)(6 94 134 159)(7 95 135 160)(8 96 136 141)(9 97 137 142)(10 98 138 143)(11 99 139 144)(12 100 140 145)(13 81 121 146)(14 82 122 147)(15 83 123 148)(16 84 124 149)(17 85 125 150)(18 86 126 151)(19 87 127 152)(20 88 128 153)(21 80 50 106)(22 61 51 107)(23 62 52 108)(24 63 53 109)(25 64 54 110)(26 65 55 111)(27 66 56 112)(28 67 57 113)(29 68 58 114)(30 69 59 115)(31 70 60 116)(32 71 41 117)(33 72 42 118)(34 73 43 119)(35 74 44 120)(36 75 45 101)(37 76 46 102)(38 77 47 103)(39 78 48 104)(40 79 49 105)
(1 23 129 52)(2 34 130 43)(3 25 131 54)(4 36 132 45)(5 27 133 56)(6 38 134 47)(7 29 135 58)(8 40 136 49)(9 31 137 60)(10 22 138 51)(11 33 139 42)(12 24 140 53)(13 35 121 44)(14 26 122 55)(15 37 123 46)(16 28 124 57)(17 39 125 48)(18 30 126 59)(19 21 127 50)(20 32 128 41)(61 98 107 143)(62 89 108 154)(63 100 109 145)(64 91 110 156)(65 82 111 147)(66 93 112 158)(67 84 113 149)(68 95 114 160)(69 86 115 151)(70 97 116 142)(71 88 117 153)(72 99 118 144)(73 90 119 155)(74 81 120 146)(75 92 101 157)(76 83 102 148)(77 94 103 159)(78 85 104 150)(79 96 105 141)(80 87 106 152)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,29)(22,28)(23,27)(24,26)(30,40)(31,39)(32,38)(33,37)(34,36)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,91)(82,90)(83,89)(84,88)(85,87)(92,100)(93,99)(94,98)(95,97)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,89,129,154)(2,90,130,155)(3,91,131,156)(4,92,132,157)(5,93,133,158)(6,94,134,159)(7,95,135,160)(8,96,136,141)(9,97,137,142)(10,98,138,143)(11,99,139,144)(12,100,140,145)(13,81,121,146)(14,82,122,147)(15,83,123,148)(16,84,124,149)(17,85,125,150)(18,86,126,151)(19,87,127,152)(20,88,128,153)(21,80,50,106)(22,61,51,107)(23,62,52,108)(24,63,53,109)(25,64,54,110)(26,65,55,111)(27,66,56,112)(28,67,57,113)(29,68,58,114)(30,69,59,115)(31,70,60,116)(32,71,41,117)(33,72,42,118)(34,73,43,119)(35,74,44,120)(36,75,45,101)(37,76,46,102)(38,77,47,103)(39,78,48,104)(40,79,49,105), (1,23,129,52)(2,34,130,43)(3,25,131,54)(4,36,132,45)(5,27,133,56)(6,38,134,47)(7,29,135,58)(8,40,136,49)(9,31,137,60)(10,22,138,51)(11,33,139,42)(12,24,140,53)(13,35,121,44)(14,26,122,55)(15,37,123,46)(16,28,124,57)(17,39,125,48)(18,30,126,59)(19,21,127,50)(20,32,128,41)(61,98,107,143)(62,89,108,154)(63,100,109,145)(64,91,110,156)(65,82,111,147)(66,93,112,158)(67,84,113,149)(68,95,114,160)(69,86,115,151)(70,97,116,142)(71,88,117,153)(72,99,118,144)(73,90,119,155)(74,81,120,146)(75,92,101,157)(76,83,102,148)(77,94,103,159)(78,85,104,150)(79,96,105,141)(80,87,106,152)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,29)(22,28)(23,27)(24,26)(30,40)(31,39)(32,38)(33,37)(34,36)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,91)(82,90)(83,89)(84,88)(85,87)(92,100)(93,99)(94,98)(95,97)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,131)(122,130)(123,129)(124,128)(125,127)(132,140)(133,139)(134,138)(135,137)(142,160)(143,159)(144,158)(145,157)(146,156)(147,155)(148,154)(149,153)(150,152), (1,89,129,154)(2,90,130,155)(3,91,131,156)(4,92,132,157)(5,93,133,158)(6,94,134,159)(7,95,135,160)(8,96,136,141)(9,97,137,142)(10,98,138,143)(11,99,139,144)(12,100,140,145)(13,81,121,146)(14,82,122,147)(15,83,123,148)(16,84,124,149)(17,85,125,150)(18,86,126,151)(19,87,127,152)(20,88,128,153)(21,80,50,106)(22,61,51,107)(23,62,52,108)(24,63,53,109)(25,64,54,110)(26,65,55,111)(27,66,56,112)(28,67,57,113)(29,68,58,114)(30,69,59,115)(31,70,60,116)(32,71,41,117)(33,72,42,118)(34,73,43,119)(35,74,44,120)(36,75,45,101)(37,76,46,102)(38,77,47,103)(39,78,48,104)(40,79,49,105), (1,23,129,52)(2,34,130,43)(3,25,131,54)(4,36,132,45)(5,27,133,56)(6,38,134,47)(7,29,135,58)(8,40,136,49)(9,31,137,60)(10,22,138,51)(11,33,139,42)(12,24,140,53)(13,35,121,44)(14,26,122,55)(15,37,123,46)(16,28,124,57)(17,39,125,48)(18,30,126,59)(19,21,127,50)(20,32,128,41)(61,98,107,143)(62,89,108,154)(63,100,109,145)(64,91,110,156)(65,82,111,147)(66,93,112,158)(67,84,113,149)(68,95,114,160)(69,86,115,151)(70,97,116,142)(71,88,117,153)(72,99,118,144)(73,90,119,155)(74,81,120,146)(75,92,101,157)(76,83,102,148)(77,94,103,159)(78,85,104,150)(79,96,105,141)(80,87,106,152) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,29),(22,28),(23,27),(24,26),(30,40),(31,39),(32,38),(33,37),(34,36),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(61,67),(62,66),(63,65),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(81,91),(82,90),(83,89),(84,88),(85,87),(92,100),(93,99),(94,98),(95,97),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111),(121,131),(122,130),(123,129),(124,128),(125,127),(132,140),(133,139),(134,138),(135,137),(142,160),(143,159),(144,158),(145,157),(146,156),(147,155),(148,154),(149,153),(150,152)], [(1,89,129,154),(2,90,130,155),(3,91,131,156),(4,92,132,157),(5,93,133,158),(6,94,134,159),(7,95,135,160),(8,96,136,141),(9,97,137,142),(10,98,138,143),(11,99,139,144),(12,100,140,145),(13,81,121,146),(14,82,122,147),(15,83,123,148),(16,84,124,149),(17,85,125,150),(18,86,126,151),(19,87,127,152),(20,88,128,153),(21,80,50,106),(22,61,51,107),(23,62,52,108),(24,63,53,109),(25,64,54,110),(26,65,55,111),(27,66,56,112),(28,67,57,113),(29,68,58,114),(30,69,59,115),(31,70,60,116),(32,71,41,117),(33,72,42,118),(34,73,43,119),(35,74,44,120),(36,75,45,101),(37,76,46,102),(38,77,47,103),(39,78,48,104),(40,79,49,105)], [(1,23,129,52),(2,34,130,43),(3,25,131,54),(4,36,132,45),(5,27,133,56),(6,38,134,47),(7,29,135,58),(8,40,136,49),(9,31,137,60),(10,22,138,51),(11,33,139,42),(12,24,140,53),(13,35,121,44),(14,26,122,55),(15,37,123,46),(16,28,124,57),(17,39,125,48),(18,30,126,59),(19,21,127,50),(20,32,128,41),(61,98,107,143),(62,89,108,154),(63,100,109,145),(64,91,110,156),(65,82,111,147),(66,93,112,158),(67,84,113,149),(68,95,114,160),(69,86,115,151),(70,97,116,142),(71,88,117,153),(72,99,118,144),(73,90,119,155),(74,81,120,146),(75,92,101,157),(76,83,102,148),(77,94,103,159),(78,85,104,150),(79,96,105,141),(80,87,106,152)])

Matrix representation G ⊆ GL6(𝔽41)

840000
35330000
0035100
0054000
0000400
0000040
,
100000
37400000
00404000
000100
000010
000001
,
100000
010000
0040000
0004000
0000040
000010
,
33370000
2680000
0040000
0004000
0000301
0000111

G:=sub<GL(6,GF(41))| [8,35,0,0,0,0,4,33,0,0,0,0,0,0,35,5,0,0,0,0,1,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,37,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,40,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[33,26,0,0,0,0,37,8,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,30,1,0,0,0,0,1,11] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q5A5B10A···10F20A···20L20M···20T
order1222222244444···4444444445510···1020···2020···20
size11111010101022224···41010101020202020222···24···48···8

53 irreducible representations

dim1111111112222224444
type++++++++++-++++-+-
imageC1C2C2C2C2C2C2C2C2D4Q8D5D10D10D102- (1+4)D4×D5Q8×D5Q8.10D10
kernelD208Q8C4×Dic10C4×D20C20⋊Q8D208C4D10⋊Q8D103Q8C5×C4⋊Q8C2×Q8×D5Dic10D20C4⋊Q8C42C4⋊C4C2×Q8C10C4C4C2
# reps1112242124422841444

In GAP, Magma, Sage, TeX

D_{20}\rtimes_8Q_8
% in TeX

G:=Group("D20:8Q8");
// GroupNames label

G:=SmallGroup(320,1399);
// by ID

G=gap.SmallGroup(320,1399);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,219,100,1571,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽