Copied to
clipboard

?

G = D207Q8order 320 = 26·5

5th semidirect product of D20 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D207Q8, C42.149D10, C10.1312+ (1+4), C20⋊Q836C2, C4.16(Q8×D5), C57(D43Q8), C20.51(C2×Q8), C42.C25D5, C4⋊C4.205D10, (C4×D20).24C2, D10.23(C2×Q8), D102Q835C2, D10⋊Q834C2, (C4×Dic10)⋊47C2, (C2×C20).88C23, C4.Dic1034C2, D208C4.11C2, C10.43(C22×Q8), (C2×C10).234C24, (C4×C20).194C22, C2.56(D48D10), Dic5.45(C4○D4), (C2×D20).275C22, C4⋊Dic5.379C22, C22.255(C23×D5), D10⋊C4.40C22, (C4×Dic5).149C22, (C2×Dic5).122C23, (C22×D5).231C23, (C2×Dic10).259C22, C10.D4.144C22, (D5×C4⋊C4)⋊35C2, C2.26(C2×Q8×D5), C2.85(D5×C4○D4), (C5×C42.C2)⋊7C2, C10.196(C2×C4○D4), (C2×C4×D5).268C22, (C2×C4).78(C22×D5), (C5×C4⋊C4).189C22, SmallGroup(320,1362)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D207Q8
C1C5C10C2×C10C22×D5C2×C4×D5D5×C4⋊C4 — D207Q8
C5C2×C10 — D207Q8

Subgroups: 806 in 228 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×13], C22, C22 [×8], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×14], D4 [×4], Q8 [×4], C23 [×2], D5 [×4], C10 [×3], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×2], C4⋊C4 [×4], C4⋊C4 [×10], C22×C4 [×6], C2×D4, C2×Q8 [×3], Dic5 [×2], Dic5 [×5], C20 [×2], C20 [×6], D10 [×4], D10 [×4], C2×C10, C2×C4⋊C4 [×2], C4×D4 [×3], C4×Q8, C22⋊Q8 [×6], C42.C2, C42.C2, C4⋊Q8, Dic10 [×4], C4×D5 [×8], D20 [×4], C2×Dic5 [×4], C2×Dic5 [×2], C2×C20 [×3], C2×C20 [×4], C22×D5 [×2], D43Q8, C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×4], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×4], C2×Dic10, C2×Dic10 [×2], C2×C4×D5 [×6], C2×D20, C4×Dic10, C4×D20, C20⋊Q8, C4.Dic10, D5×C4⋊C4 [×2], D208C4 [×2], D10⋊Q8 [×4], D102Q8 [×2], C5×C42.C2, D207Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22×Q8, C2×C4○D4, 2+ (1+4), C22×D5 [×7], D43Q8, Q8×D5 [×2], C23×D5, C2×Q8×D5, D5×C4○D4, D48D10, D207Q8

Generators and relations
 G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=a-1, ac=ca, dad-1=a9, cbc-1=a10b, dbd-1=a18b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 113)(2 112)(3 111)(4 110)(5 109)(6 108)(7 107)(8 106)(9 105)(10 104)(11 103)(12 102)(13 101)(14 120)(15 119)(16 118)(17 117)(18 116)(19 115)(20 114)(21 67)(22 66)(23 65)(24 64)(25 63)(26 62)(27 61)(28 80)(29 79)(30 78)(31 77)(32 76)(33 75)(34 74)(35 73)(36 72)(37 71)(38 70)(39 69)(40 68)(41 100)(42 99)(43 98)(44 97)(45 96)(46 95)(47 94)(48 93)(49 92)(50 91)(51 90)(52 89)(53 88)(54 87)(55 86)(56 85)(57 84)(58 83)(59 82)(60 81)(121 155)(122 154)(123 153)(124 152)(125 151)(126 150)(127 149)(128 148)(129 147)(130 146)(131 145)(132 144)(133 143)(134 142)(135 141)(136 160)(137 159)(138 158)(139 157)(140 156)
(1 44 109 83)(2 45 110 84)(3 46 111 85)(4 47 112 86)(5 48 113 87)(6 49 114 88)(7 50 115 89)(8 51 116 90)(9 52 117 91)(10 53 118 92)(11 54 119 93)(12 55 120 94)(13 56 101 95)(14 57 102 96)(15 58 103 97)(16 59 104 98)(17 60 105 99)(18 41 106 100)(19 42 107 81)(20 43 108 82)(21 126 65 158)(22 127 66 159)(23 128 67 160)(24 129 68 141)(25 130 69 142)(26 131 70 143)(27 132 71 144)(28 133 72 145)(29 134 73 146)(30 135 74 147)(31 136 75 148)(32 137 76 149)(33 138 77 150)(34 139 78 151)(35 140 79 152)(36 121 80 153)(37 122 61 154)(38 123 62 155)(39 124 63 156)(40 125 64 157)
(1 135 109 147)(2 124 110 156)(3 133 111 145)(4 122 112 154)(5 131 113 143)(6 140 114 152)(7 129 115 141)(8 138 116 150)(9 127 117 159)(10 136 118 148)(11 125 119 157)(12 134 120 146)(13 123 101 155)(14 132 102 144)(15 121 103 153)(16 130 104 142)(17 139 105 151)(18 128 106 160)(19 137 107 149)(20 126 108 158)(21 82 65 43)(22 91 66 52)(23 100 67 41)(24 89 68 50)(25 98 69 59)(26 87 70 48)(27 96 71 57)(28 85 72 46)(29 94 73 55)(30 83 74 44)(31 92 75 53)(32 81 76 42)(33 90 77 51)(34 99 78 60)(35 88 79 49)(36 97 80 58)(37 86 61 47)(38 95 62 56)(39 84 63 45)(40 93 64 54)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,113)(2,112)(3,111)(4,110)(5,109)(6,108)(7,107)(8,106)(9,105)(10,104)(11,103)(12,102)(13,101)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,67)(22,66)(23,65)(24,64)(25,63)(26,62)(27,61)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,100)(42,99)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85)(57,84)(58,83)(59,82)(60,81)(121,155)(122,154)(123,153)(124,152)(125,151)(126,150)(127,149)(128,148)(129,147)(130,146)(131,145)(132,144)(133,143)(134,142)(135,141)(136,160)(137,159)(138,158)(139,157)(140,156), (1,44,109,83)(2,45,110,84)(3,46,111,85)(4,47,112,86)(5,48,113,87)(6,49,114,88)(7,50,115,89)(8,51,116,90)(9,52,117,91)(10,53,118,92)(11,54,119,93)(12,55,120,94)(13,56,101,95)(14,57,102,96)(15,58,103,97)(16,59,104,98)(17,60,105,99)(18,41,106,100)(19,42,107,81)(20,43,108,82)(21,126,65,158)(22,127,66,159)(23,128,67,160)(24,129,68,141)(25,130,69,142)(26,131,70,143)(27,132,71,144)(28,133,72,145)(29,134,73,146)(30,135,74,147)(31,136,75,148)(32,137,76,149)(33,138,77,150)(34,139,78,151)(35,140,79,152)(36,121,80,153)(37,122,61,154)(38,123,62,155)(39,124,63,156)(40,125,64,157), (1,135,109,147)(2,124,110,156)(3,133,111,145)(4,122,112,154)(5,131,113,143)(6,140,114,152)(7,129,115,141)(8,138,116,150)(9,127,117,159)(10,136,118,148)(11,125,119,157)(12,134,120,146)(13,123,101,155)(14,132,102,144)(15,121,103,153)(16,130,104,142)(17,139,105,151)(18,128,106,160)(19,137,107,149)(20,126,108,158)(21,82,65,43)(22,91,66,52)(23,100,67,41)(24,89,68,50)(25,98,69,59)(26,87,70,48)(27,96,71,57)(28,85,72,46)(29,94,73,55)(30,83,74,44)(31,92,75,53)(32,81,76,42)(33,90,77,51)(34,99,78,60)(35,88,79,49)(36,97,80,58)(37,86,61,47)(38,95,62,56)(39,84,63,45)(40,93,64,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,113)(2,112)(3,111)(4,110)(5,109)(6,108)(7,107)(8,106)(9,105)(10,104)(11,103)(12,102)(13,101)(14,120)(15,119)(16,118)(17,117)(18,116)(19,115)(20,114)(21,67)(22,66)(23,65)(24,64)(25,63)(26,62)(27,61)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,72)(37,71)(38,70)(39,69)(40,68)(41,100)(42,99)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85)(57,84)(58,83)(59,82)(60,81)(121,155)(122,154)(123,153)(124,152)(125,151)(126,150)(127,149)(128,148)(129,147)(130,146)(131,145)(132,144)(133,143)(134,142)(135,141)(136,160)(137,159)(138,158)(139,157)(140,156), (1,44,109,83)(2,45,110,84)(3,46,111,85)(4,47,112,86)(5,48,113,87)(6,49,114,88)(7,50,115,89)(8,51,116,90)(9,52,117,91)(10,53,118,92)(11,54,119,93)(12,55,120,94)(13,56,101,95)(14,57,102,96)(15,58,103,97)(16,59,104,98)(17,60,105,99)(18,41,106,100)(19,42,107,81)(20,43,108,82)(21,126,65,158)(22,127,66,159)(23,128,67,160)(24,129,68,141)(25,130,69,142)(26,131,70,143)(27,132,71,144)(28,133,72,145)(29,134,73,146)(30,135,74,147)(31,136,75,148)(32,137,76,149)(33,138,77,150)(34,139,78,151)(35,140,79,152)(36,121,80,153)(37,122,61,154)(38,123,62,155)(39,124,63,156)(40,125,64,157), (1,135,109,147)(2,124,110,156)(3,133,111,145)(4,122,112,154)(5,131,113,143)(6,140,114,152)(7,129,115,141)(8,138,116,150)(9,127,117,159)(10,136,118,148)(11,125,119,157)(12,134,120,146)(13,123,101,155)(14,132,102,144)(15,121,103,153)(16,130,104,142)(17,139,105,151)(18,128,106,160)(19,137,107,149)(20,126,108,158)(21,82,65,43)(22,91,66,52)(23,100,67,41)(24,89,68,50)(25,98,69,59)(26,87,70,48)(27,96,71,57)(28,85,72,46)(29,94,73,55)(30,83,74,44)(31,92,75,53)(32,81,76,42)(33,90,77,51)(34,99,78,60)(35,88,79,49)(36,97,80,58)(37,86,61,47)(38,95,62,56)(39,84,63,45)(40,93,64,54) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,113),(2,112),(3,111),(4,110),(5,109),(6,108),(7,107),(8,106),(9,105),(10,104),(11,103),(12,102),(13,101),(14,120),(15,119),(16,118),(17,117),(18,116),(19,115),(20,114),(21,67),(22,66),(23,65),(24,64),(25,63),(26,62),(27,61),(28,80),(29,79),(30,78),(31,77),(32,76),(33,75),(34,74),(35,73),(36,72),(37,71),(38,70),(39,69),(40,68),(41,100),(42,99),(43,98),(44,97),(45,96),(46,95),(47,94),(48,93),(49,92),(50,91),(51,90),(52,89),(53,88),(54,87),(55,86),(56,85),(57,84),(58,83),(59,82),(60,81),(121,155),(122,154),(123,153),(124,152),(125,151),(126,150),(127,149),(128,148),(129,147),(130,146),(131,145),(132,144),(133,143),(134,142),(135,141),(136,160),(137,159),(138,158),(139,157),(140,156)], [(1,44,109,83),(2,45,110,84),(3,46,111,85),(4,47,112,86),(5,48,113,87),(6,49,114,88),(7,50,115,89),(8,51,116,90),(9,52,117,91),(10,53,118,92),(11,54,119,93),(12,55,120,94),(13,56,101,95),(14,57,102,96),(15,58,103,97),(16,59,104,98),(17,60,105,99),(18,41,106,100),(19,42,107,81),(20,43,108,82),(21,126,65,158),(22,127,66,159),(23,128,67,160),(24,129,68,141),(25,130,69,142),(26,131,70,143),(27,132,71,144),(28,133,72,145),(29,134,73,146),(30,135,74,147),(31,136,75,148),(32,137,76,149),(33,138,77,150),(34,139,78,151),(35,140,79,152),(36,121,80,153),(37,122,61,154),(38,123,62,155),(39,124,63,156),(40,125,64,157)], [(1,135,109,147),(2,124,110,156),(3,133,111,145),(4,122,112,154),(5,131,113,143),(6,140,114,152),(7,129,115,141),(8,138,116,150),(9,127,117,159),(10,136,118,148),(11,125,119,157),(12,134,120,146),(13,123,101,155),(14,132,102,144),(15,121,103,153),(16,130,104,142),(17,139,105,151),(18,128,106,160),(19,137,107,149),(20,126,108,158),(21,82,65,43),(22,91,66,52),(23,100,67,41),(24,89,68,50),(25,98,69,59),(26,87,70,48),(27,96,71,57),(28,85,72,46),(29,94,73,55),(30,83,74,44),(31,92,75,53),(32,81,76,42),(33,90,77,51),(34,99,78,60),(35,88,79,49),(36,97,80,58),(37,86,61,47),(38,95,62,56),(39,84,63,45),(40,93,64,54)])

Matrix representation G ⊆ GL6(𝔽41)

3410000
4000000
0003200
0032000
000010
000001
,
1340000
0400000
0040000
000100
0000400
0000040
,
4000000
0400000
0004000
0040000
0000139
0000140
,
3470000
4070000
0004000
0040000
0000713
00003434

G:=sub<GL(6,GF(41))| [34,40,0,0,0,0,1,0,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,34,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,1,0,0,0,0,39,40],[34,40,0,0,0,0,7,7,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,7,34,0,0,0,0,13,34] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q5A5B10A···10F20A···20L20M···20T
order1222222244444···4444444445510···1020···2020···20
size11111010101022224···41010101020202020222···24···48···8

53 irreducible representations

dim1111111111222224444
type++++++++++-++++-+
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D102+ (1+4)Q8×D5D5×C4○D4D48D10
kernelD207Q8C4×Dic10C4×D20C20⋊Q8C4.Dic10D5×C4⋊C4D208C4D10⋊Q8D102Q8C5×C42.C2D20C42.C2Dic5C42C4⋊C4C10C4C2C2
# reps11111224214242121444

In GAP, Magma, Sage, TeX

D_{20}\rtimes_7Q_8
% in TeX

G:=Group("D20:7Q8");
// GroupNames label

G:=SmallGroup(320,1362);
// by ID

G=gap.SmallGroup(320,1362);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,219,184,1571,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^9,c*b*c^-1=a^10*b,d*b*d^-1=a^18*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽