metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q16⋊3F5, Dic20⋊3C4, C8.8(C2×F5), C40.6(C2×C4), C5⋊(Q16⋊C4), (C5×Q16)⋊2C4, C5⋊Q16⋊4C4, (C2×F5).7D4, C2.24(D4×F5), Q8.4(C2×F5), (Q8×F5).2C2, C10.23(C4×D4), C40⋊C4.1C2, C8⋊F5.1C2, (D5×Q16).3C2, C4⋊F5.6C22, D10.68(C2×D4), D5⋊C8.5C22, Q8⋊F5.2C2, (C4×F5).5C22, C4.10(C22×F5), (Q8×D5).7C22, C20.10(C22×C4), Dic10.6(C2×C4), (C8×D5).15C22, (C4×D5).32C23, Dic5.6(C4○D4), D5.3(C8.C22), (C5×Q8).4(C2×C4), C5⋊2C8.12(C2×C4), SmallGroup(320,1077)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 418 in 108 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2 [×2], C4, C4 [×9], C22, C5, C8, C8 [×2], C2×C4 [×7], Q8 [×2], Q8 [×4], D5 [×2], C10, C42 [×3], C4⋊C4 [×4], C2×C8 [×2], Q16, Q16 [×3], C2×Q8 [×2], Dic5, Dic5 [×2], C20, C20 [×2], F5 [×4], D10, C8⋊C4, Q8⋊C4 [×2], C4.Q8, C4×Q8 [×2], C2×Q16, C5⋊2C8, C40, C5⋊C8, Dic10 [×2], Dic10 [×2], C4×D5, C4×D5 [×2], C5×Q8 [×2], C2×F5 [×2], C2×F5 [×2], Q16⋊C4, C8×D5, Dic20, C5⋊Q16 [×2], C5×Q16, D5⋊C8, C4×F5, C4×F5 [×2], C4⋊F5 [×2], C4⋊F5 [×2], Q8×D5 [×2], C8⋊F5, C40⋊C4, Q8⋊F5 [×2], D5×Q16, Q8×F5 [×2], Dic20⋊C4
Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, C22×C4, C2×D4, C4○D4, F5, C4×D4, C8.C22 [×2], C2×F5 [×3], Q16⋊C4, C22×F5, D4×F5, Dic20⋊C4
Generators and relations
G = < a,b,c | a40=c4=1, b2=a20, bab-1=a-1, cac-1=a13, cbc-1=a20b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 54 21 74)(2 53 22 73)(3 52 23 72)(4 51 24 71)(5 50 25 70)(6 49 26 69)(7 48 27 68)(8 47 28 67)(9 46 29 66)(10 45 30 65)(11 44 31 64)(12 43 32 63)(13 42 33 62)(14 41 34 61)(15 80 35 60)(16 79 36 59)(17 78 37 58)(18 77 38 57)(19 76 39 56)(20 75 40 55)
(1 79 21 59)(2 76 30 72)(3 73 39 45)(4 70 8 58)(5 67 17 71)(6 64 26 44)(7 61 35 57)(9 55 13 43)(10 52 22 56)(11 49 31 69)(12 46 40 42)(14 80 18 68)(15 77 27 41)(16 74 36 54)(19 65 23 53)(20 62 32 66)(24 50 28 78)(25 47 37 51)(29 75 33 63)(34 60 38 48)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,54,21,74)(2,53,22,73)(3,52,23,72)(4,51,24,71)(5,50,25,70)(6,49,26,69)(7,48,27,68)(8,47,28,67)(9,46,29,66)(10,45,30,65)(11,44,31,64)(12,43,32,63)(13,42,33,62)(14,41,34,61)(15,80,35,60)(16,79,36,59)(17,78,37,58)(18,77,38,57)(19,76,39,56)(20,75,40,55), (1,79,21,59)(2,76,30,72)(3,73,39,45)(4,70,8,58)(5,67,17,71)(6,64,26,44)(7,61,35,57)(9,55,13,43)(10,52,22,56)(11,49,31,69)(12,46,40,42)(14,80,18,68)(15,77,27,41)(16,74,36,54)(19,65,23,53)(20,62,32,66)(24,50,28,78)(25,47,37,51)(29,75,33,63)(34,60,38,48)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,54,21,74)(2,53,22,73)(3,52,23,72)(4,51,24,71)(5,50,25,70)(6,49,26,69)(7,48,27,68)(8,47,28,67)(9,46,29,66)(10,45,30,65)(11,44,31,64)(12,43,32,63)(13,42,33,62)(14,41,34,61)(15,80,35,60)(16,79,36,59)(17,78,37,58)(18,77,38,57)(19,76,39,56)(20,75,40,55), (1,79,21,59)(2,76,30,72)(3,73,39,45)(4,70,8,58)(5,67,17,71)(6,64,26,44)(7,61,35,57)(9,55,13,43)(10,52,22,56)(11,49,31,69)(12,46,40,42)(14,80,18,68)(15,77,27,41)(16,74,36,54)(19,65,23,53)(20,62,32,66)(24,50,28,78)(25,47,37,51)(29,75,33,63)(34,60,38,48) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,54,21,74),(2,53,22,73),(3,52,23,72),(4,51,24,71),(5,50,25,70),(6,49,26,69),(7,48,27,68),(8,47,28,67),(9,46,29,66),(10,45,30,65),(11,44,31,64),(12,43,32,63),(13,42,33,62),(14,41,34,61),(15,80,35,60),(16,79,36,59),(17,78,37,58),(18,77,38,57),(19,76,39,56),(20,75,40,55)], [(1,79,21,59),(2,76,30,72),(3,73,39,45),(4,70,8,58),(5,67,17,71),(6,64,26,44),(7,61,35,57),(9,55,13,43),(10,52,22,56),(11,49,31,69),(12,46,40,42),(14,80,18,68),(15,77,27,41),(16,74,36,54),(19,65,23,53),(20,62,32,66),(24,50,28,78),(25,47,37,51),(29,75,33,63),(34,60,38,48)])
Matrix representation ►G ⊆ GL8(𝔽41)
40 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
40 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 39 | 27 | 0 |
0 | 0 | 0 | 0 | 29 | 29 | 27 | 13 |
0 | 0 | 0 | 0 | 2 | 16 | 0 | 4 |
0 | 0 | 0 | 0 | 37 | 39 | 12 | 10 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 40 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 39 | 37 | 37 |
0 | 0 | 0 | 0 | 39 | 25 | 0 | 37 |
0 | 0 | 0 | 0 | 39 | 2 | 14 | 0 |
0 | 0 | 0 | 0 | 16 | 14 | 2 | 18 |
G:=sub<GL(8,GF(41))| [40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,29,2,37,0,0,0,0,39,29,16,39,0,0,0,0,27,27,0,12,0,0,0,0,0,13,4,10],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,40,0,0,0,0,0,1,0,40,0,0,0,0,40,1,0,0,0,0,0,0,0,2,0,40],[0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,25,39,39,16,0,0,0,0,39,25,2,14,0,0,0,0,37,0,14,2,0,0,0,0,37,37,0,18] >;
Character table of Dic20⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 5 | 8A | 8B | 8C | 8D | 10 | 20A | 20B | 20C | 40A | 40B | |
size | 1 | 1 | 5 | 5 | 2 | 4 | 4 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 4 | 4 | 20 | 20 | 20 | 4 | 8 | 16 | 16 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -i | -1 | i | i | -i | -1 | 1 | -i | i | i | -i | 1 | -1 | 1 | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | -1 | -i | -i | i | 1 | 1 | i | -i | i | -i | 1 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -1 | i | i | -i | 1 | -1 | i | -i | -i | i | 1 | -1 | 1 | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | i | -1 | -i | -i | i | -1 | -1 | -i | i | -i | i | 1 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | i | -1 | -i | -i | i | 1 | -1 | -i | i | i | -i | 1 | -1 | 1 | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -i | -1 | i | i | -i | -1 | -1 | i | -i | i | -i | 1 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | i | -1 | -i | -i | i | -1 | 1 | i | -i | -i | i | 1 | -1 | 1 | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -1 | i | i | -i | 1 | 1 | -i | i | -i | i | 1 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2i | 2 | 2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2i | 2 | 2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 4 | 4 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ22 | 4 | 4 | 0 | 0 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ23 | 4 | 4 | 0 | 0 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -4 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ24 | 4 | 4 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 4 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ25 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ26 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ27 | 8 | 8 | 0 | 0 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×F5 |
ρ28 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | √10 | √10 | symplectic faithful, Schur index 2 |
ρ29 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | √10 | √10 | symplectic faithful, Schur index 2 |
In GAP, Magma, Sage, TeX
Dic_{20}\rtimes C_4
% in TeX
G:=Group("Dic20:C4");
// GroupNames label
G:=SmallGroup(320,1077);
// by ID
G=gap.SmallGroup(320,1077);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,184,851,438,102,6278,1595]);
// Polycyclic
G:=Group<a,b,c|a^40=c^4=1,b^2=a^20,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^20*b>;
// generators/relations