Copied to
clipboard

?

G = C4⋊C421D14order 448 = 26·7

4th semidirect product of C4⋊C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C421D14, (C4×D7)⋊12D4, (C2×D4)⋊22D14, C4⋊D426D7, C4.182(D4×D7), D143(C4○D4), C23⋊D148C2, C282D417C2, C22⋊C426D14, (D4×Dic7)⋊20C2, D14.40(C2×D4), C28.226(C2×D4), D142Q820C2, Dic74D48C2, (D4×C14)⋊11C22, C4⋊Dic730C22, Dic7.63(C2×D4), C14.65(C22×D4), D14.D418C2, C28.48D433C2, C222(D42D7), (C2×C28).594C23, (C2×C14).150C24, Dic7⋊C428C22, D14⋊C4.14C22, C74(C22.19C24), (C4×Dic7)⋊20C22, (C22×C4).368D14, C23.D722C22, C23.15(C22×D7), (C2×Dic14)⋊24C22, (C22×C14).19C23, (C2×Dic7).71C23, C22.171(C23×D7), (C22×C28).240C22, (C22×Dic7)⋊19C22, (C23×D7).107C22, (C22×D7).185C23, C2.38(C2×D4×D7), (D7×C22×C4)⋊4C2, (C7×C4⋊C4)⋊9C22, C2.38(D7×C4○D4), C4⋊C47D719C2, (C2×C14)⋊5(C4○D4), (C7×C4⋊D4)⋊12C2, (C2×D42D7)⋊12C2, C14.151(C2×C4○D4), C2.36(C2×D42D7), (C2×C4×D7).247C22, (C7×C22⋊C4)⋊11C22, (C2×C4).294(C22×D7), (C2×C7⋊D4).27C22, SmallGroup(448,1059)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4⋊C421D14
C1C7C14C2×C14C22×D7C23×D7D7×C22×C4 — C4⋊C421D14
C7C2×C14 — C4⋊C421D14

Subgroups: 1548 in 330 conjugacy classes, 109 normal (43 characteristic)
C1, C2 [×3], C2 [×8], C4 [×2], C4 [×10], C22, C22 [×2], C22 [×24], C7, C2×C4 [×2], C2×C4 [×2], C2×C4 [×24], D4 [×14], Q8 [×2], C23, C23 [×2], C23 [×8], D7 [×4], C14 [×3], C14 [×4], C42 [×2], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×5], C22×C4, C22×C4 [×11], C2×D4, C2×D4 [×2], C2×D4 [×4], C2×Q8, C4○D4 [×4], C24, Dic7 [×2], Dic7 [×5], C28 [×2], C28 [×3], D14 [×4], D14 [×12], C2×C14, C2×C14 [×2], C2×C14 [×8], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4, C4⋊D4, C22⋊Q8 [×2], C22.D4 [×2], C23×C4, C2×C4○D4, Dic14 [×2], C4×D7 [×4], C4×D7 [×6], C2×Dic7 [×2], C2×Dic7 [×4], C2×Dic7 [×6], C7⋊D4 [×8], C2×C28 [×2], C2×C28 [×2], C2×C28 [×2], C7×D4 [×6], C22×D7 [×2], C22×D7 [×6], C22×C14, C22×C14 [×2], C22.19C24, C4×Dic7 [×2], Dic7⋊C4 [×2], C4⋊Dic7, C4⋊Dic7 [×2], D14⋊C4 [×4], C23.D7 [×4], C7×C22⋊C4 [×2], C7×C4⋊C4, C2×Dic14, C2×C4×D7 [×4], C2×C4×D7 [×4], D42D7 [×4], C22×Dic7, C22×Dic7 [×2], C2×C7⋊D4 [×4], C22×C28, D4×C14, D4×C14 [×2], C23×D7, Dic74D4 [×2], D14.D4 [×2], C4⋊C47D7, D142Q8, C28.48D4, D4×Dic7 [×2], C23⋊D14 [×2], C282D4, C7×C4⋊D4, D7×C22×C4, C2×D42D7, C4⋊C421D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×4], C24, D14 [×7], C22×D4, C2×C4○D4 [×2], C22×D7 [×7], C22.19C24, D4×D7 [×2], D42D7 [×2], C23×D7, C2×D4×D7, C2×D42D7, D7×C4○D4, C4⋊C421D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 14 17 30)(2 8 18 31)(3 9 19 32)(4 10 20 33)(5 11 21 34)(6 12 15 35)(7 13 16 29)(22 36 44 54)(23 37 45 55)(24 38 46 56)(25 39 47 50)(26 40 48 51)(27 41 49 52)(28 42 43 53)(57 103 94 75)(58 104 95 76)(59 105 96 77)(60 106 97 78)(61 107 98 79)(62 108 85 80)(63 109 86 81)(64 110 87 82)(65 111 88 83)(66 112 89 84)(67 99 90 71)(68 100 91 72)(69 101 92 73)(70 102 93 74)
(1 108 22 101)(2 102 23 109)(3 110 24 103)(4 104 25 111)(5 112 26 105)(6 106 27 99)(7 100 28 107)(8 70 37 63)(9 64 38 57)(10 58 39 65)(11 66 40 59)(12 60 41 67)(13 68 42 61)(14 62 36 69)(15 78 49 71)(16 72 43 79)(17 80 44 73)(18 74 45 81)(19 82 46 75)(20 76 47 83)(21 84 48 77)(29 91 53 98)(30 85 54 92)(31 93 55 86)(32 87 56 94)(33 95 50 88)(34 89 51 96)(35 97 52 90)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 12)(9 11)(13 14)(15 18)(16 17)(19 21)(22 28)(23 27)(24 26)(29 30)(31 35)(32 34)(36 42)(37 41)(38 40)(43 44)(45 49)(46 48)(51 56)(52 55)(53 54)(57 96)(58 95)(59 94)(60 93)(61 92)(62 91)(63 90)(64 89)(65 88)(66 87)(67 86)(68 85)(69 98)(70 97)(71 109)(72 108)(73 107)(74 106)(75 105)(76 104)(77 103)(78 102)(79 101)(80 100)(81 99)(82 112)(83 111)(84 110)

G:=sub<Sym(112)| (1,14,17,30)(2,8,18,31)(3,9,19,32)(4,10,20,33)(5,11,21,34)(6,12,15,35)(7,13,16,29)(22,36,44,54)(23,37,45,55)(24,38,46,56)(25,39,47,50)(26,40,48,51)(27,41,49,52)(28,42,43,53)(57,103,94,75)(58,104,95,76)(59,105,96,77)(60,106,97,78)(61,107,98,79)(62,108,85,80)(63,109,86,81)(64,110,87,82)(65,111,88,83)(66,112,89,84)(67,99,90,71)(68,100,91,72)(69,101,92,73)(70,102,93,74), (1,108,22,101)(2,102,23,109)(3,110,24,103)(4,104,25,111)(5,112,26,105)(6,106,27,99)(7,100,28,107)(8,70,37,63)(9,64,38,57)(10,58,39,65)(11,66,40,59)(12,60,41,67)(13,68,42,61)(14,62,36,69)(15,78,49,71)(16,72,43,79)(17,80,44,73)(18,74,45,81)(19,82,46,75)(20,76,47,83)(21,84,48,77)(29,91,53,98)(30,85,54,92)(31,93,55,86)(32,87,56,94)(33,95,50,88)(34,89,51,96)(35,97,52,90), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,28)(23,27)(24,26)(29,30)(31,35)(32,34)(36,42)(37,41)(38,40)(43,44)(45,49)(46,48)(51,56)(52,55)(53,54)(57,96)(58,95)(59,94)(60,93)(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,98)(70,97)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,112)(83,111)(84,110)>;

G:=Group( (1,14,17,30)(2,8,18,31)(3,9,19,32)(4,10,20,33)(5,11,21,34)(6,12,15,35)(7,13,16,29)(22,36,44,54)(23,37,45,55)(24,38,46,56)(25,39,47,50)(26,40,48,51)(27,41,49,52)(28,42,43,53)(57,103,94,75)(58,104,95,76)(59,105,96,77)(60,106,97,78)(61,107,98,79)(62,108,85,80)(63,109,86,81)(64,110,87,82)(65,111,88,83)(66,112,89,84)(67,99,90,71)(68,100,91,72)(69,101,92,73)(70,102,93,74), (1,108,22,101)(2,102,23,109)(3,110,24,103)(4,104,25,111)(5,112,26,105)(6,106,27,99)(7,100,28,107)(8,70,37,63)(9,64,38,57)(10,58,39,65)(11,66,40,59)(12,60,41,67)(13,68,42,61)(14,62,36,69)(15,78,49,71)(16,72,43,79)(17,80,44,73)(18,74,45,81)(19,82,46,75)(20,76,47,83)(21,84,48,77)(29,91,53,98)(30,85,54,92)(31,93,55,86)(32,87,56,94)(33,95,50,88)(34,89,51,96)(35,97,52,90), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,12)(9,11)(13,14)(15,18)(16,17)(19,21)(22,28)(23,27)(24,26)(29,30)(31,35)(32,34)(36,42)(37,41)(38,40)(43,44)(45,49)(46,48)(51,56)(52,55)(53,54)(57,96)(58,95)(59,94)(60,93)(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,98)(70,97)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,112)(83,111)(84,110) );

G=PermutationGroup([(1,14,17,30),(2,8,18,31),(3,9,19,32),(4,10,20,33),(5,11,21,34),(6,12,15,35),(7,13,16,29),(22,36,44,54),(23,37,45,55),(24,38,46,56),(25,39,47,50),(26,40,48,51),(27,41,49,52),(28,42,43,53),(57,103,94,75),(58,104,95,76),(59,105,96,77),(60,106,97,78),(61,107,98,79),(62,108,85,80),(63,109,86,81),(64,110,87,82),(65,111,88,83),(66,112,89,84),(67,99,90,71),(68,100,91,72),(69,101,92,73),(70,102,93,74)], [(1,108,22,101),(2,102,23,109),(3,110,24,103),(4,104,25,111),(5,112,26,105),(6,106,27,99),(7,100,28,107),(8,70,37,63),(9,64,38,57),(10,58,39,65),(11,66,40,59),(12,60,41,67),(13,68,42,61),(14,62,36,69),(15,78,49,71),(16,72,43,79),(17,80,44,73),(18,74,45,81),(19,82,46,75),(20,76,47,83),(21,84,48,77),(29,91,53,98),(30,85,54,92),(31,93,55,86),(32,87,56,94),(33,95,50,88),(34,89,51,96),(35,97,52,90)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,12),(9,11),(13,14),(15,18),(16,17),(19,21),(22,28),(23,27),(24,26),(29,30),(31,35),(32,34),(36,42),(37,41),(38,40),(43,44),(45,49),(46,48),(51,56),(52,55),(53,54),(57,96),(58,95),(59,94),(60,93),(61,92),(62,91),(63,90),(64,89),(65,88),(66,87),(67,86),(68,85),(69,98),(70,97),(71,109),(72,108),(73,107),(74,106),(75,105),(76,104),(77,103),(78,102),(79,101),(80,100),(81,99),(82,112),(83,111),(84,110)])

Matrix representation G ⊆ GL6(𝔽29)

1700000
1120000
0028000
0002800
0000170
0000012
,
1720000
1120000
001000
000100
0000012
0000120
,
100000
010000
00272100
00162000
000010
0000028
,
100000
12280000
0082800
0052100
000010
0000028

G:=sub<GL(6,GF(29))| [17,1,0,0,0,0,0,12,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,0,0,0,0,0,0,12],[17,1,0,0,0,0,2,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,16,0,0,0,0,21,20,0,0,0,0,0,0,1,0,0,0,0,0,0,28],[1,12,0,0,0,0,0,28,0,0,0,0,0,0,8,5,0,0,0,0,28,21,0,0,0,0,0,0,1,0,0,0,0,0,0,28] >;

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O14P···14U28A···28L28M···28R
order122222222222444444444444444477714···1414···1414···1428···2828···28
size111122441414141422224477771414282828282222···24···48···84···48···8

70 irreducible representations

dim11111111111122222222444
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4C4○D4D14D14D14D14D4×D7D42D7D7×C4○D4
kernelC4⋊C421D14Dic74D4D14.D4C4⋊C47D7D142Q8C28.48D4D4×Dic7C23⋊D14C282D4C7×C4⋊D4D7×C22×C4C2×D42D7C4×D7C4⋊D4D14C2×C14C22⋊C4C4⋊C4C22×C4C2×D4C4C22C2
# reps12211122111143446339666

In GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{21}D_{14}
% in TeX

G:=Group("C4:C4:21D14");
// GroupNames label

G:=SmallGroup(448,1059);
// by ID

G=gap.SmallGroup(448,1059);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,794,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽