Copied to
clipboard

?

G = D815D14order 448 = 26·7

4th semidirect product of D8 and D14 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D815D14, Q1613D14, D28.45D4, SD1611D14, D5619C22, C56.38C23, C28.16C24, Dic14.45D4, D28.11C23, C4○D84D7, (D7×D8)⋊7C2, C73(D4○D8), C4○D41D14, (C2×C8)⋊13D14, C7⋊D4.1D4, C7⋊C8.7C23, (C2×D56)⋊23C2, D56⋊C26C2, D4⋊D73C22, C4.143(D4×D7), (C8×D7)⋊8C22, (D4×D7)⋊2C22, Q8⋊D72C22, Q8.D147C2, D4⋊D147C2, D48D145C2, C22.8(D4×D7), (C2×C56)⋊12C22, D14.29(C2×D4), C28.349(C2×D4), (C7×D8)⋊13C22, (C4×D7).9C23, C8.16(C22×D7), C4.16(C23×D7), D28.2C47C2, (C2×D28)⋊34C22, C8⋊D711C22, Dic7.34(C2×D4), (C7×Q16)⋊11C22, Q82D72C22, D4.10(C22×D7), (C7×D4).10C23, (C7×Q8).10C23, Q8.10(C22×D7), (C2×C28).533C23, (C7×SD16)⋊11C22, C4○D28.54C22, C14.117(C22×D4), C4.Dic730C22, C2.90(C2×D4×D7), (C7×C4○D8)⋊5C2, (C2×C14).13(C2×D4), (C7×C4○D4)⋊3C22, (C2×C4).232(C22×D7), SmallGroup(448,1222)

Series: Derived Chief Lower central Upper central

C1C28 — D815D14
C1C7C14C28C4×D7C4○D28D48D14 — D815D14
C7C14C28 — D815D14

Subgroups: 1620 in 268 conjugacy classes, 99 normal (31 characteristic)
C1, C2, C2 [×9], C4 [×2], C4 [×4], C22, C22 [×14], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×8], D4 [×2], D4 [×19], Q8 [×2], Q8, C23 [×6], D7 [×6], C14, C14 [×3], C2×C8, C2×C8 [×2], M4(2) [×3], D8, D8 [×8], SD16 [×2], SD16 [×4], Q16, C2×D4 [×12], C4○D4 [×2], C4○D4 [×7], Dic7 [×2], C28 [×2], C28 [×2], D14 [×2], D14 [×10], C2×C14, C2×C14 [×2], C8○D4, C2×D8 [×3], C4○D8, C4○D8 [×2], C8⋊C22 [×6], 2+ (1+4) [×2], C7⋊C8 [×2], C56 [×2], Dic14, C4×D7 [×2], C4×D7 [×4], D28, D28 [×4], D28 [×6], C7⋊D4 [×2], C7⋊D4 [×4], C2×C28, C2×C28 [×2], C7×D4 [×2], C7×D4 [×2], C7×Q8 [×2], C22×D7 [×6], D4○D8, C8×D7 [×2], C8⋊D7 [×2], D56 [×4], C4.Dic7, D4⋊D7 [×4], Q8⋊D7 [×4], C2×C56, C7×D8, C7×SD16 [×2], C7×Q16, C2×D28 [×2], C2×D28 [×2], C4○D28, C4○D28 [×2], D4×D7 [×4], D4×D7 [×4], Q82D7 [×4], C7×C4○D4 [×2], D28.2C4, C2×D56, D7×D8 [×2], D56⋊C2 [×4], Q8.D14 [×2], D4⋊D14 [×2], C7×C4○D8, D48D14 [×2], D815D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, C22×D7 [×7], D4○D8, D4×D7 [×2], C23×D7, C2×D4×D7, D815D14

Generators and relations
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=dad=a-1, ac=ca, cbc-1=a4b, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 66 47 73 107 41 91 19)(2 67 48 74 108 42 92 20)(3 68 49 75 109 29 93 21)(4 69 50 76 110 30 94 22)(5 70 51 77 111 31 95 23)(6 57 52 78 112 32 96 24)(7 58 53 79 99 33 97 25)(8 59 54 80 100 34 98 26)(9 60 55 81 101 35 85 27)(10 61 56 82 102 36 86 28)(11 62 43 83 103 37 87 15)(12 63 44 84 104 38 88 16)(13 64 45 71 105 39 89 17)(14 65 46 72 106 40 90 18)
(2 108)(4 110)(6 112)(8 100)(10 102)(12 104)(14 106)(15 62)(16 38)(17 64)(18 40)(19 66)(20 42)(21 68)(22 30)(23 70)(24 32)(25 58)(26 34)(27 60)(28 36)(29 75)(31 77)(33 79)(35 81)(37 83)(39 71)(41 73)(43 87)(45 89)(47 91)(49 93)(51 95)(53 97)(55 85)(57 78)(59 80)(61 82)(63 84)(65 72)(67 74)(69 76)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 79)(2 78)(3 77)(4 76)(5 75)(6 74)(7 73)(8 72)(9 71)(10 84)(11 83)(12 82)(13 81)(14 80)(15 103)(16 102)(17 101)(18 100)(19 99)(20 112)(21 111)(22 110)(23 109)(24 108)(25 107)(26 106)(27 105)(28 104)(29 95)(30 94)(31 93)(32 92)(33 91)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 98)(41 97)(42 96)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 70)(50 69)(51 68)(52 67)(53 66)(54 65)(55 64)(56 63)

G:=sub<Sym(112)| (1,66,47,73,107,41,91,19)(2,67,48,74,108,42,92,20)(3,68,49,75,109,29,93,21)(4,69,50,76,110,30,94,22)(5,70,51,77,111,31,95,23)(6,57,52,78,112,32,96,24)(7,58,53,79,99,33,97,25)(8,59,54,80,100,34,98,26)(9,60,55,81,101,35,85,27)(10,61,56,82,102,36,86,28)(11,62,43,83,103,37,87,15)(12,63,44,84,104,38,88,16)(13,64,45,71,105,39,89,17)(14,65,46,72,106,40,90,18), (2,108)(4,110)(6,112)(8,100)(10,102)(12,104)(14,106)(15,62)(16,38)(17,64)(18,40)(19,66)(20,42)(21,68)(22,30)(23,70)(24,32)(25,58)(26,34)(27,60)(28,36)(29,75)(31,77)(33,79)(35,81)(37,83)(39,71)(41,73)(43,87)(45,89)(47,91)(49,93)(51,95)(53,97)(55,85)(57,78)(59,80)(61,82)(63,84)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,84)(11,83)(12,82)(13,81)(14,80)(15,103)(16,102)(17,101)(18,100)(19,99)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,98)(41,97)(42,96)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,64)(56,63)>;

G:=Group( (1,66,47,73,107,41,91,19)(2,67,48,74,108,42,92,20)(3,68,49,75,109,29,93,21)(4,69,50,76,110,30,94,22)(5,70,51,77,111,31,95,23)(6,57,52,78,112,32,96,24)(7,58,53,79,99,33,97,25)(8,59,54,80,100,34,98,26)(9,60,55,81,101,35,85,27)(10,61,56,82,102,36,86,28)(11,62,43,83,103,37,87,15)(12,63,44,84,104,38,88,16)(13,64,45,71,105,39,89,17)(14,65,46,72,106,40,90,18), (2,108)(4,110)(6,112)(8,100)(10,102)(12,104)(14,106)(15,62)(16,38)(17,64)(18,40)(19,66)(20,42)(21,68)(22,30)(23,70)(24,32)(25,58)(26,34)(27,60)(28,36)(29,75)(31,77)(33,79)(35,81)(37,83)(39,71)(41,73)(43,87)(45,89)(47,91)(49,93)(51,95)(53,97)(55,85)(57,78)(59,80)(61,82)(63,84)(65,72)(67,74)(69,76), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,84)(11,83)(12,82)(13,81)(14,80)(15,103)(16,102)(17,101)(18,100)(19,99)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,98)(41,97)(42,96)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,70)(50,69)(51,68)(52,67)(53,66)(54,65)(55,64)(56,63) );

G=PermutationGroup([(1,66,47,73,107,41,91,19),(2,67,48,74,108,42,92,20),(3,68,49,75,109,29,93,21),(4,69,50,76,110,30,94,22),(5,70,51,77,111,31,95,23),(6,57,52,78,112,32,96,24),(7,58,53,79,99,33,97,25),(8,59,54,80,100,34,98,26),(9,60,55,81,101,35,85,27),(10,61,56,82,102,36,86,28),(11,62,43,83,103,37,87,15),(12,63,44,84,104,38,88,16),(13,64,45,71,105,39,89,17),(14,65,46,72,106,40,90,18)], [(2,108),(4,110),(6,112),(8,100),(10,102),(12,104),(14,106),(15,62),(16,38),(17,64),(18,40),(19,66),(20,42),(21,68),(22,30),(23,70),(24,32),(25,58),(26,34),(27,60),(28,36),(29,75),(31,77),(33,79),(35,81),(37,83),(39,71),(41,73),(43,87),(45,89),(47,91),(49,93),(51,95),(53,97),(55,85),(57,78),(59,80),(61,82),(63,84),(65,72),(67,74),(69,76)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,79),(2,78),(3,77),(4,76),(5,75),(6,74),(7,73),(8,72),(9,71),(10,84),(11,83),(12,82),(13,81),(14,80),(15,103),(16,102),(17,101),(18,100),(19,99),(20,112),(21,111),(22,110),(23,109),(24,108),(25,107),(26,106),(27,105),(28,104),(29,95),(30,94),(31,93),(32,92),(33,91),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,98),(41,97),(42,96),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,70),(50,69),(51,68),(52,67),(53,66),(54,65),(55,64),(56,63)])

Matrix representation G ⊆ GL4(𝔽113) generated by

820310
082031
820820
082082
,
1000
0100
001120
000112
,
009419
009413
199400
1910000
,
16169797
37977616
97979797
76167616
G:=sub<GL(4,GF(113))| [82,0,82,0,0,82,0,82,31,0,82,0,0,31,0,82],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112],[0,0,19,19,0,0,94,100,94,94,0,0,19,13,0,0],[16,37,97,76,16,97,97,16,97,76,97,76,97,16,97,16] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D4E4F7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14L28A···28F28G28H28I28J···28O56A···56L
order122222222224444447778888814141414141414···1428···2828282828···2856···56
size112441414282828282244141422222428282224448···82···24448···84···4

64 irreducible representations

dim1111111112222222224444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○D8D4×D7D4×D7D815D14
kernelD815D14D28.2C4C2×D56D7×D8D56⋊C2Q8.D14D4⋊D14C7×C4○D8D48D14Dic14D28C7⋊D4C4○D8C2×C8D8SD16Q16C4○D4C7C4C22C1
# reps11124221211233363623312

In GAP, Magma, Sage, TeX

D_8\rtimes_{15}D_{14}
% in TeX

G:=Group("D8:15D14");
// GroupNames label

G:=SmallGroup(448,1222);
// by ID

G=gap.SmallGroup(448,1222);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,387,570,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽