Copied to
clipboard

?

G = D811D14order 448 = 26·7

5th semidirect product of D8 and D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D811D14, Q1610D14, D28.46D4, SD1615D14, C56.43C23, C28.17C24, Dic14.46D4, D28.12C23, Dic14.11C23, C4○D85D7, C4○D42D14, (C2×C8)⋊14D14, C7⋊D4.2D4, C7⋊C8.8C23, D8⋊D76C2, D4⋊D74C22, (D7×SD16)⋊6C2, C73(D4○SD16), C4.144(D4×D7), Q8⋊D73C22, D4⋊D148C2, D48D146C2, (Q8×D7)⋊2C22, C22.9(D4×D7), (C2×C56)⋊17C22, Q16⋊D76C2, D14.30(C2×D4), C28.350(C2×D4), (C8×D7)⋊10C22, (C7×D8)⋊16C22, D4.D73C22, (D4×D7).2C22, C7⋊Q162C22, C4.17(C23×D7), C8.17(C22×D7), SD163D76C2, D4.9D147C2, D42D72C22, C56⋊C221C22, C8⋊D716C22, Dic7.35(C2×D4), (C7×Q16)⋊14C22, (C7×D4).11C23, (C4×D7).10C23, D4.11(C22×D7), D4.10D145C2, D28.2C410C2, (C7×Q8).11C23, Q8.11(C22×D7), (C2×C28).534C23, (C7×SD16)⋊16C22, C4○D28.55C22, C14.118(C22×D4), C4.Dic731C22, Q82D7.2C22, (C2×Dic14)⋊38C22, (C2×D28).181C22, C2.91(C2×D4×D7), (C7×C4○D8)⋊7C2, (C2×C56⋊C2)⋊27C2, (C2×C14).14(C2×D4), (C7×C4○D4)⋊4C22, (C2×C4).233(C22×D7), SmallGroup(448,1223)

Series: Derived Chief Lower central Upper central

C1C28 — D811D14
C1C7C14C28C4×D7C4○D28D48D14 — D811D14
C7C14C28 — D811D14

Subgroups: 1364 in 258 conjugacy classes, 99 normal (53 characteristic)
C1, C2, C2 [×7], C4 [×2], C4 [×6], C22, C22 [×9], C7, C8 [×2], C8 [×2], C2×C4, C2×C4 [×11], D4 [×2], D4 [×14], Q8 [×2], Q8 [×6], C23 [×3], D7 [×4], C14, C14 [×3], C2×C8, C2×C8 [×2], M4(2) [×3], D8, D8 [×2], SD16 [×2], SD16 [×8], Q16, Q16 [×2], C2×D4 [×6], C2×Q8 [×4], C4○D4 [×2], C4○D4 [×9], Dic7 [×2], Dic7 [×2], C28 [×2], C28 [×2], D14 [×2], D14 [×5], C2×C14, C2×C14 [×2], C8○D4, C2×SD16 [×3], C4○D8, C4○D8 [×2], C8⋊C22 [×3], C8.C22 [×3], 2+ (1+4), 2- (1+4), C7⋊C8 [×2], C56 [×2], Dic14, Dic14 [×2], Dic14 [×3], C4×D7 [×2], C4×D7 [×4], D28, D28 [×2], D28 [×3], C2×Dic7 [×3], C7⋊D4 [×2], C7⋊D4 [×4], C2×C28, C2×C28 [×2], C7×D4 [×2], C7×D4 [×2], C7×Q8 [×2], C22×D7 [×3], D4○SD16, C8×D7 [×2], C8⋊D7 [×2], C56⋊C2 [×4], C4.Dic7, D4⋊D7 [×2], D4.D7 [×2], Q8⋊D7 [×2], C7⋊Q16 [×2], C2×C56, C7×D8, C7×SD16 [×2], C7×Q16, C2×Dic14, C2×Dic14, C2×D28, C2×D28, C4○D28, C4○D28 [×2], D4×D7 [×2], D4×D7 [×2], D42D7 [×2], D42D7 [×2], Q8×D7 [×2], Q82D7 [×2], C7×C4○D4 [×2], D28.2C4, C2×C56⋊C2, D8⋊D7 [×2], D7×SD16 [×2], SD163D7 [×2], Q16⋊D7 [×2], D4⋊D14, D4.9D14, C7×C4○D8, D48D14, D4.10D14, D811D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, C22×D7 [×7], D4○SD16, D4×D7 [×2], C23×D7, C2×D4×D7, D811D14

Generators and relations
 G = < a,b,c,d | a8=b2=c14=d2=1, bab=a-1, ac=ca, dad=a3, cbc-1=a4b, dbd=a6b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 16 106 80 87 50 60 35)(2 17 107 81 88 51 61 36)(3 18 108 82 89 52 62 37)(4 19 109 83 90 53 63 38)(5 20 110 84 91 54 64 39)(6 21 111 71 92 55 65 40)(7 22 112 72 93 56 66 41)(8 23 99 73 94 43 67 42)(9 24 100 74 95 44 68 29)(10 25 101 75 96 45 69 30)(11 26 102 76 97 46 70 31)(12 27 103 77 98 47 57 32)(13 28 104 78 85 48 58 33)(14 15 105 79 86 49 59 34)
(1 35)(2 81)(3 37)(4 83)(5 39)(6 71)(7 41)(8 73)(9 29)(10 75)(11 31)(12 77)(13 33)(14 79)(15 105)(16 60)(17 107)(18 62)(19 109)(20 64)(21 111)(22 66)(23 99)(24 68)(25 101)(26 70)(27 103)(28 58)(30 96)(32 98)(34 86)(36 88)(38 90)(40 92)(42 94)(43 67)(44 100)(45 69)(46 102)(47 57)(48 104)(49 59)(50 106)(51 61)(52 108)(53 63)(54 110)(55 65)(56 112)(72 93)(74 95)(76 97)(78 85)(80 87)(82 89)(84 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 112)(2 111)(3 110)(4 109)(5 108)(6 107)(7 106)(8 105)(9 104)(10 103)(11 102)(12 101)(13 100)(14 99)(15 43)(16 56)(17 55)(18 54)(19 53)(20 52)(21 51)(22 50)(23 49)(24 48)(25 47)(26 46)(27 45)(28 44)(29 33)(30 32)(34 42)(35 41)(36 40)(37 39)(57 96)(58 95)(59 94)(60 93)(61 92)(62 91)(63 90)(64 89)(65 88)(66 87)(67 86)(68 85)(69 98)(70 97)(71 81)(72 80)(73 79)(74 78)(75 77)(82 84)

G:=sub<Sym(112)| (1,16,106,80,87,50,60,35)(2,17,107,81,88,51,61,36)(3,18,108,82,89,52,62,37)(4,19,109,83,90,53,63,38)(5,20,110,84,91,54,64,39)(6,21,111,71,92,55,65,40)(7,22,112,72,93,56,66,41)(8,23,99,73,94,43,67,42)(9,24,100,74,95,44,68,29)(10,25,101,75,96,45,69,30)(11,26,102,76,97,46,70,31)(12,27,103,77,98,47,57,32)(13,28,104,78,85,48,58,33)(14,15,105,79,86,49,59,34), (1,35)(2,81)(3,37)(4,83)(5,39)(6,71)(7,41)(8,73)(9,29)(10,75)(11,31)(12,77)(13,33)(14,79)(15,105)(16,60)(17,107)(18,62)(19,109)(20,64)(21,111)(22,66)(23,99)(24,68)(25,101)(26,70)(27,103)(28,58)(30,96)(32,98)(34,86)(36,88)(38,90)(40,92)(42,94)(43,67)(44,100)(45,69)(46,102)(47,57)(48,104)(49,59)(50,106)(51,61)(52,108)(53,63)(54,110)(55,65)(56,112)(72,93)(74,95)(76,97)(78,85)(80,87)(82,89)(84,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,112)(2,111)(3,110)(4,109)(5,108)(6,107)(7,106)(8,105)(9,104)(10,103)(11,102)(12,101)(13,100)(14,99)(15,43)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,50)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(29,33)(30,32)(34,42)(35,41)(36,40)(37,39)(57,96)(58,95)(59,94)(60,93)(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,98)(70,97)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84)>;

G:=Group( (1,16,106,80,87,50,60,35)(2,17,107,81,88,51,61,36)(3,18,108,82,89,52,62,37)(4,19,109,83,90,53,63,38)(5,20,110,84,91,54,64,39)(6,21,111,71,92,55,65,40)(7,22,112,72,93,56,66,41)(8,23,99,73,94,43,67,42)(9,24,100,74,95,44,68,29)(10,25,101,75,96,45,69,30)(11,26,102,76,97,46,70,31)(12,27,103,77,98,47,57,32)(13,28,104,78,85,48,58,33)(14,15,105,79,86,49,59,34), (1,35)(2,81)(3,37)(4,83)(5,39)(6,71)(7,41)(8,73)(9,29)(10,75)(11,31)(12,77)(13,33)(14,79)(15,105)(16,60)(17,107)(18,62)(19,109)(20,64)(21,111)(22,66)(23,99)(24,68)(25,101)(26,70)(27,103)(28,58)(30,96)(32,98)(34,86)(36,88)(38,90)(40,92)(42,94)(43,67)(44,100)(45,69)(46,102)(47,57)(48,104)(49,59)(50,106)(51,61)(52,108)(53,63)(54,110)(55,65)(56,112)(72,93)(74,95)(76,97)(78,85)(80,87)(82,89)(84,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,112)(2,111)(3,110)(4,109)(5,108)(6,107)(7,106)(8,105)(9,104)(10,103)(11,102)(12,101)(13,100)(14,99)(15,43)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,50)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(29,33)(30,32)(34,42)(35,41)(36,40)(37,39)(57,96)(58,95)(59,94)(60,93)(61,92)(62,91)(63,90)(64,89)(65,88)(66,87)(67,86)(68,85)(69,98)(70,97)(71,81)(72,80)(73,79)(74,78)(75,77)(82,84) );

G=PermutationGroup([(1,16,106,80,87,50,60,35),(2,17,107,81,88,51,61,36),(3,18,108,82,89,52,62,37),(4,19,109,83,90,53,63,38),(5,20,110,84,91,54,64,39),(6,21,111,71,92,55,65,40),(7,22,112,72,93,56,66,41),(8,23,99,73,94,43,67,42),(9,24,100,74,95,44,68,29),(10,25,101,75,96,45,69,30),(11,26,102,76,97,46,70,31),(12,27,103,77,98,47,57,32),(13,28,104,78,85,48,58,33),(14,15,105,79,86,49,59,34)], [(1,35),(2,81),(3,37),(4,83),(5,39),(6,71),(7,41),(8,73),(9,29),(10,75),(11,31),(12,77),(13,33),(14,79),(15,105),(16,60),(17,107),(18,62),(19,109),(20,64),(21,111),(22,66),(23,99),(24,68),(25,101),(26,70),(27,103),(28,58),(30,96),(32,98),(34,86),(36,88),(38,90),(40,92),(42,94),(43,67),(44,100),(45,69),(46,102),(47,57),(48,104),(49,59),(50,106),(51,61),(52,108),(53,63),(54,110),(55,65),(56,112),(72,93),(74,95),(76,97),(78,85),(80,87),(82,89),(84,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,112),(2,111),(3,110),(4,109),(5,108),(6,107),(7,106),(8,105),(9,104),(10,103),(11,102),(12,101),(13,100),(14,99),(15,43),(16,56),(17,55),(18,54),(19,53),(20,52),(21,51),(22,50),(23,49),(24,48),(25,47),(26,46),(27,45),(28,44),(29,33),(30,32),(34,42),(35,41),(36,40),(37,39),(57,96),(58,95),(59,94),(60,93),(61,92),(62,91),(63,90),(64,89),(65,88),(66,87),(67,86),(68,85),(69,98),(70,97),(71,81),(72,80),(73,79),(74,78),(75,77),(82,84)])

Matrix representation G ⊆ GL4(𝔽113) generated by

76713742
42377176
76717671
42374237
,
76713742
42377176
37423742
71767176
,
004109
00481
109400
1093200
,
003333
0010480
333300
1048000
G:=sub<GL(4,GF(113))| [76,42,76,42,71,37,71,37,37,71,76,42,42,76,71,37],[76,42,37,71,71,37,42,76,37,71,37,71,42,76,42,76],[0,0,109,109,0,0,4,32,4,4,0,0,109,81,0,0],[0,0,33,104,0,0,33,80,33,104,0,0,33,80,0,0] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E14A14B14C14D14E14F14G···14L28A···28F28G28H28I28J···28O56A···56L
order122222222444444447778888814141414141414···1428···2828282828···2856···56
size112441414282822441414282822222428282224448···82···24448···84···4

64 irreducible representations

dim1111111111112222222224444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14D4○SD16D4×D7D4×D7D811D14
kernelD811D14D28.2C4C2×C56⋊C2D8⋊D7D7×SD16SD163D7Q16⋊D7D4⋊D14D4.9D14C7×C4○D8D48D14D4.10D14Dic14D28C7⋊D4C4○D8C2×C8D8SD16Q16C4○D4C7C4C22C1
# reps11122221111111233363623312

In GAP, Magma, Sage, TeX

D_8\rtimes_{11}D_{14}
% in TeX

G:=Group("D8:11D14");
// GroupNames label

G:=SmallGroup(448,1223);
// by ID

G=gap.SmallGroup(448,1223);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,387,570,185,136,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^14=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^3,c*b*c^-1=a^4*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽