Copied to
clipboard

G = C2×C40⋊S3order 480 = 25·3·5

Direct product of C2 and C40⋊S3

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C40⋊S3, C89D30, C4032D6, C2433D10, C12040C22, C3010M4(2), C60.253C23, (C2×C40)⋊9S3, (C2×C8)⋊6D15, (C2×C24)⋊11D5, (C2×C120)⋊15C2, C62(C8⋊D5), C20.94(C4×S3), (C4×D15).9C4, (C2×C4).99D30, C4.24(C4×D15), C12.62(C4×D5), C104(C8⋊S3), C60.197(C2×C4), D30.35(C2×C4), (C2×C20).414D6, C1523(C2×M4(2)), C153C832C22, (C2×C12).416D10, (C22×D15).9C4, C22.14(C4×D15), C4.35(C22×D15), (C2×C60).499C22, C30.164(C22×C4), C20.223(C22×S3), (C2×Dic15).15C4, Dic15.43(C2×C4), (C4×D15).49C22, C12.225(C22×D5), C56(C2×C8⋊S3), C33(C2×C8⋊D5), C6.69(C2×C4×D5), C2.14(C2×C4×D15), C10.101(S3×C2×C4), (C2×C4×D15).12C2, (C2×C153C8)⋊11C2, (C2×C6).32(C4×D5), (C2×C10).57(C4×S3), (C2×C30).139(C2×C4), SmallGroup(480,865)

Series: Derived Chief Lower central Upper central

C1C30 — C2×C40⋊S3
C1C5C15C30C60C4×D15C2×C4×D15 — C2×C40⋊S3
C15C30 — C2×C40⋊S3
C1C2×C4C2×C8

Generators and relations for C2×C40⋊S3
 G = < a,b,c,d | a2=b40=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b29, dcd=c-1 >

Subgroups: 692 in 136 conjugacy classes, 63 normal (33 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C2×C8, C2×C8, M4(2), C22×C4, Dic5, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, D15, C30, C30, C2×M4(2), C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C8⋊S3, C2×C3⋊C8, C2×C24, S3×C2×C4, Dic15, C60, D30, D30, C2×C30, C8⋊D5, C2×C52C8, C2×C40, C2×C4×D5, C2×C8⋊S3, C153C8, C120, C4×D15, C2×Dic15, C2×C60, C22×D15, C2×C8⋊D5, C40⋊S3, C2×C153C8, C2×C120, C2×C4×D15, C2×C40⋊S3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, D6, M4(2), C22×C4, D10, C4×S3, C22×S3, D15, C2×M4(2), C4×D5, C22×D5, C8⋊S3, S3×C2×C4, D30, C8⋊D5, C2×C4×D5, C2×C8⋊S3, C4×D15, C22×D15, C2×C8⋊D5, C40⋊S3, C2×C4×D15, C2×C40⋊S3

Smallest permutation representation of C2×C40⋊S3
On 240 points
Generators in S240
(1 161)(2 162)(3 163)(4 164)(5 165)(6 166)(7 167)(8 168)(9 169)(10 170)(11 171)(12 172)(13 173)(14 174)(15 175)(16 176)(17 177)(18 178)(19 179)(20 180)(21 181)(22 182)(23 183)(24 184)(25 185)(26 186)(27 187)(28 188)(29 189)(30 190)(31 191)(32 192)(33 193)(34 194)(35 195)(36 196)(37 197)(38 198)(39 199)(40 200)(41 105)(42 106)(43 107)(44 108)(45 109)(46 110)(47 111)(48 112)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(65 89)(66 90)(67 91)(68 92)(69 93)(70 94)(71 95)(72 96)(73 97)(74 98)(75 99)(76 100)(77 101)(78 102)(79 103)(80 104)(121 238)(122 239)(123 240)(124 201)(125 202)(126 203)(127 204)(128 205)(129 206)(130 207)(131 208)(132 209)(133 210)(134 211)(135 212)(136 213)(137 214)(138 215)(139 216)(140 217)(141 218)(142 219)(143 220)(144 221)(145 222)(146 223)(147 224)(148 225)(149 226)(150 227)(151 228)(152 229)(153 230)(154 231)(155 232)(156 233)(157 234)(158 235)(159 236)(160 237)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 79 145)(2 80 146)(3 41 147)(4 42 148)(5 43 149)(6 44 150)(7 45 151)(8 46 152)(9 47 153)(10 48 154)(11 49 155)(12 50 156)(13 51 157)(14 52 158)(15 53 159)(16 54 160)(17 55 121)(18 56 122)(19 57 123)(20 58 124)(21 59 125)(22 60 126)(23 61 127)(24 62 128)(25 63 129)(26 64 130)(27 65 131)(28 66 132)(29 67 133)(30 68 134)(31 69 135)(32 70 136)(33 71 137)(34 72 138)(35 73 139)(36 74 140)(37 75 141)(38 76 142)(39 77 143)(40 78 144)(81 240 179)(82 201 180)(83 202 181)(84 203 182)(85 204 183)(86 205 184)(87 206 185)(88 207 186)(89 208 187)(90 209 188)(91 210 189)(92 211 190)(93 212 191)(94 213 192)(95 214 193)(96 215 194)(97 216 195)(98 217 196)(99 218 197)(100 219 198)(101 220 199)(102 221 200)(103 222 161)(104 223 162)(105 224 163)(106 225 164)(107 226 165)(108 227 166)(109 228 167)(110 229 168)(111 230 169)(112 231 170)(113 232 171)(114 233 172)(115 234 173)(116 235 174)(117 236 175)(118 237 176)(119 238 177)(120 239 178)
(2 30)(3 19)(4 8)(5 37)(6 26)(7 15)(9 33)(10 22)(12 40)(13 29)(14 18)(16 36)(17 25)(20 32)(23 39)(24 28)(27 35)(34 38)(41 123)(42 152)(43 141)(44 130)(45 159)(46 148)(47 137)(48 126)(49 155)(50 144)(51 133)(52 122)(53 151)(54 140)(55 129)(56 158)(57 147)(58 136)(59 125)(60 154)(61 143)(62 132)(63 121)(64 150)(65 139)(66 128)(67 157)(68 146)(69 135)(70 124)(71 153)(72 142)(73 131)(74 160)(75 149)(76 138)(77 127)(78 156)(79 145)(80 134)(81 224)(82 213)(83 202)(84 231)(85 220)(86 209)(87 238)(88 227)(89 216)(90 205)(91 234)(92 223)(93 212)(94 201)(95 230)(96 219)(97 208)(98 237)(99 226)(100 215)(101 204)(102 233)(103 222)(104 211)(105 240)(106 229)(107 218)(108 207)(109 236)(110 225)(111 214)(112 203)(113 232)(114 221)(115 210)(116 239)(117 228)(118 217)(119 206)(120 235)(162 190)(163 179)(164 168)(165 197)(166 186)(167 175)(169 193)(170 182)(172 200)(173 189)(174 178)(176 196)(177 185)(180 192)(183 199)(184 188)(187 195)(194 198)

G:=sub<Sym(240)| (1,161)(2,162)(3,163)(4,164)(5,165)(6,166)(7,167)(8,168)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,189)(30,190)(31,191)(32,192)(33,193)(34,194)(35,195)(36,196)(37,197)(38,198)(39,199)(40,200)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(121,238)(122,239)(123,240)(124,201)(125,202)(126,203)(127,204)(128,205)(129,206)(130,207)(131,208)(132,209)(133,210)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,232)(156,233)(157,234)(158,235)(159,236)(160,237), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,79,145)(2,80,146)(3,41,147)(4,42,148)(5,43,149)(6,44,150)(7,45,151)(8,46,152)(9,47,153)(10,48,154)(11,49,155)(12,50,156)(13,51,157)(14,52,158)(15,53,159)(16,54,160)(17,55,121)(18,56,122)(19,57,123)(20,58,124)(21,59,125)(22,60,126)(23,61,127)(24,62,128)(25,63,129)(26,64,130)(27,65,131)(28,66,132)(29,67,133)(30,68,134)(31,69,135)(32,70,136)(33,71,137)(34,72,138)(35,73,139)(36,74,140)(37,75,141)(38,76,142)(39,77,143)(40,78,144)(81,240,179)(82,201,180)(83,202,181)(84,203,182)(85,204,183)(86,205,184)(87,206,185)(88,207,186)(89,208,187)(90,209,188)(91,210,189)(92,211,190)(93,212,191)(94,213,192)(95,214,193)(96,215,194)(97,216,195)(98,217,196)(99,218,197)(100,219,198)(101,220,199)(102,221,200)(103,222,161)(104,223,162)(105,224,163)(106,225,164)(107,226,165)(108,227,166)(109,228,167)(110,229,168)(111,230,169)(112,231,170)(113,232,171)(114,233,172)(115,234,173)(116,235,174)(117,236,175)(118,237,176)(119,238,177)(120,239,178), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,123)(42,152)(43,141)(44,130)(45,159)(46,148)(47,137)(48,126)(49,155)(50,144)(51,133)(52,122)(53,151)(54,140)(55,129)(56,158)(57,147)(58,136)(59,125)(60,154)(61,143)(62,132)(63,121)(64,150)(65,139)(66,128)(67,157)(68,146)(69,135)(70,124)(71,153)(72,142)(73,131)(74,160)(75,149)(76,138)(77,127)(78,156)(79,145)(80,134)(81,224)(82,213)(83,202)(84,231)(85,220)(86,209)(87,238)(88,227)(89,216)(90,205)(91,234)(92,223)(93,212)(94,201)(95,230)(96,219)(97,208)(98,237)(99,226)(100,215)(101,204)(102,233)(103,222)(104,211)(105,240)(106,229)(107,218)(108,207)(109,236)(110,225)(111,214)(112,203)(113,232)(114,221)(115,210)(116,239)(117,228)(118,217)(119,206)(120,235)(162,190)(163,179)(164,168)(165,197)(166,186)(167,175)(169,193)(170,182)(172,200)(173,189)(174,178)(176,196)(177,185)(180,192)(183,199)(184,188)(187,195)(194,198)>;

G:=Group( (1,161)(2,162)(3,163)(4,164)(5,165)(6,166)(7,167)(8,168)(9,169)(10,170)(11,171)(12,172)(13,173)(14,174)(15,175)(16,176)(17,177)(18,178)(19,179)(20,180)(21,181)(22,182)(23,183)(24,184)(25,185)(26,186)(27,187)(28,188)(29,189)(30,190)(31,191)(32,192)(33,193)(34,194)(35,195)(36,196)(37,197)(38,198)(39,199)(40,200)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)(70,94)(71,95)(72,96)(73,97)(74,98)(75,99)(76,100)(77,101)(78,102)(79,103)(80,104)(121,238)(122,239)(123,240)(124,201)(125,202)(126,203)(127,204)(128,205)(129,206)(130,207)(131,208)(132,209)(133,210)(134,211)(135,212)(136,213)(137,214)(138,215)(139,216)(140,217)(141,218)(142,219)(143,220)(144,221)(145,222)(146,223)(147,224)(148,225)(149,226)(150,227)(151,228)(152,229)(153,230)(154,231)(155,232)(156,233)(157,234)(158,235)(159,236)(160,237), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,79,145)(2,80,146)(3,41,147)(4,42,148)(5,43,149)(6,44,150)(7,45,151)(8,46,152)(9,47,153)(10,48,154)(11,49,155)(12,50,156)(13,51,157)(14,52,158)(15,53,159)(16,54,160)(17,55,121)(18,56,122)(19,57,123)(20,58,124)(21,59,125)(22,60,126)(23,61,127)(24,62,128)(25,63,129)(26,64,130)(27,65,131)(28,66,132)(29,67,133)(30,68,134)(31,69,135)(32,70,136)(33,71,137)(34,72,138)(35,73,139)(36,74,140)(37,75,141)(38,76,142)(39,77,143)(40,78,144)(81,240,179)(82,201,180)(83,202,181)(84,203,182)(85,204,183)(86,205,184)(87,206,185)(88,207,186)(89,208,187)(90,209,188)(91,210,189)(92,211,190)(93,212,191)(94,213,192)(95,214,193)(96,215,194)(97,216,195)(98,217,196)(99,218,197)(100,219,198)(101,220,199)(102,221,200)(103,222,161)(104,223,162)(105,224,163)(106,225,164)(107,226,165)(108,227,166)(109,228,167)(110,229,168)(111,230,169)(112,231,170)(113,232,171)(114,233,172)(115,234,173)(116,235,174)(117,236,175)(118,237,176)(119,238,177)(120,239,178), (2,30)(3,19)(4,8)(5,37)(6,26)(7,15)(9,33)(10,22)(12,40)(13,29)(14,18)(16,36)(17,25)(20,32)(23,39)(24,28)(27,35)(34,38)(41,123)(42,152)(43,141)(44,130)(45,159)(46,148)(47,137)(48,126)(49,155)(50,144)(51,133)(52,122)(53,151)(54,140)(55,129)(56,158)(57,147)(58,136)(59,125)(60,154)(61,143)(62,132)(63,121)(64,150)(65,139)(66,128)(67,157)(68,146)(69,135)(70,124)(71,153)(72,142)(73,131)(74,160)(75,149)(76,138)(77,127)(78,156)(79,145)(80,134)(81,224)(82,213)(83,202)(84,231)(85,220)(86,209)(87,238)(88,227)(89,216)(90,205)(91,234)(92,223)(93,212)(94,201)(95,230)(96,219)(97,208)(98,237)(99,226)(100,215)(101,204)(102,233)(103,222)(104,211)(105,240)(106,229)(107,218)(108,207)(109,236)(110,225)(111,214)(112,203)(113,232)(114,221)(115,210)(116,239)(117,228)(118,217)(119,206)(120,235)(162,190)(163,179)(164,168)(165,197)(166,186)(167,175)(169,193)(170,182)(172,200)(173,189)(174,178)(176,196)(177,185)(180,192)(183,199)(184,188)(187,195)(194,198) );

G=PermutationGroup([[(1,161),(2,162),(3,163),(4,164),(5,165),(6,166),(7,167),(8,168),(9,169),(10,170),(11,171),(12,172),(13,173),(14,174),(15,175),(16,176),(17,177),(18,178),(19,179),(20,180),(21,181),(22,182),(23,183),(24,184),(25,185),(26,186),(27,187),(28,188),(29,189),(30,190),(31,191),(32,192),(33,193),(34,194),(35,195),(36,196),(37,197),(38,198),(39,199),(40,200),(41,105),(42,106),(43,107),(44,108),(45,109),(46,110),(47,111),(48,112),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(65,89),(66,90),(67,91),(68,92),(69,93),(70,94),(71,95),(72,96),(73,97),(74,98),(75,99),(76,100),(77,101),(78,102),(79,103),(80,104),(121,238),(122,239),(123,240),(124,201),(125,202),(126,203),(127,204),(128,205),(129,206),(130,207),(131,208),(132,209),(133,210),(134,211),(135,212),(136,213),(137,214),(138,215),(139,216),(140,217),(141,218),(142,219),(143,220),(144,221),(145,222),(146,223),(147,224),(148,225),(149,226),(150,227),(151,228),(152,229),(153,230),(154,231),(155,232),(156,233),(157,234),(158,235),(159,236),(160,237)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,79,145),(2,80,146),(3,41,147),(4,42,148),(5,43,149),(6,44,150),(7,45,151),(8,46,152),(9,47,153),(10,48,154),(11,49,155),(12,50,156),(13,51,157),(14,52,158),(15,53,159),(16,54,160),(17,55,121),(18,56,122),(19,57,123),(20,58,124),(21,59,125),(22,60,126),(23,61,127),(24,62,128),(25,63,129),(26,64,130),(27,65,131),(28,66,132),(29,67,133),(30,68,134),(31,69,135),(32,70,136),(33,71,137),(34,72,138),(35,73,139),(36,74,140),(37,75,141),(38,76,142),(39,77,143),(40,78,144),(81,240,179),(82,201,180),(83,202,181),(84,203,182),(85,204,183),(86,205,184),(87,206,185),(88,207,186),(89,208,187),(90,209,188),(91,210,189),(92,211,190),(93,212,191),(94,213,192),(95,214,193),(96,215,194),(97,216,195),(98,217,196),(99,218,197),(100,219,198),(101,220,199),(102,221,200),(103,222,161),(104,223,162),(105,224,163),(106,225,164),(107,226,165),(108,227,166),(109,228,167),(110,229,168),(111,230,169),(112,231,170),(113,232,171),(114,233,172),(115,234,173),(116,235,174),(117,236,175),(118,237,176),(119,238,177),(120,239,178)], [(2,30),(3,19),(4,8),(5,37),(6,26),(7,15),(9,33),(10,22),(12,40),(13,29),(14,18),(16,36),(17,25),(20,32),(23,39),(24,28),(27,35),(34,38),(41,123),(42,152),(43,141),(44,130),(45,159),(46,148),(47,137),(48,126),(49,155),(50,144),(51,133),(52,122),(53,151),(54,140),(55,129),(56,158),(57,147),(58,136),(59,125),(60,154),(61,143),(62,132),(63,121),(64,150),(65,139),(66,128),(67,157),(68,146),(69,135),(70,124),(71,153),(72,142),(73,131),(74,160),(75,149),(76,138),(77,127),(78,156),(79,145),(80,134),(81,224),(82,213),(83,202),(84,231),(85,220),(86,209),(87,238),(88,227),(89,216),(90,205),(91,234),(92,223),(93,212),(94,201),(95,230),(96,219),(97,208),(98,237),(99,226),(100,215),(101,204),(102,233),(103,222),(104,211),(105,240),(106,229),(107,218),(108,207),(109,236),(110,225),(111,214),(112,203),(113,232),(114,221),(115,210),(116,239),(117,228),(118,217),(119,206),(120,235),(162,190),(163,179),(164,168),(165,197),(166,186),(167,175),(169,193),(170,182),(172,200),(173,189),(174,178),(176,196),(177,185),(180,192),(183,199),(184,188),(187,195),(194,198)]])

132 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F5A5B6A6B6C8A8B8C8D8E8F8G8H10A···10F12A12B12C12D15A15B15C15D20A···20H24A···24H30A···30L40A···40P60A···60P120A···120AF
order1222223444444556668888888810···10121212121515151520···2024···2430···3040···4060···60120···120
size11113030211113030222222222303030302···2222222222···22···22···22···22···22···2

132 irreducible representations

dim111111112222222222222222222
type++++++++++++++
imageC1C2C2C2C2C4C4C4S3D5D6D6M4(2)D10D10C4×S3C4×S3D15C4×D5C4×D5C8⋊S3D30D30C8⋊D5C4×D15C4×D15C40⋊S3
kernelC2×C40⋊S3C40⋊S3C2×C153C8C2×C120C2×C4×D15C4×D15C2×Dic15C22×D15C2×C40C2×C24C40C2×C20C30C24C2×C12C20C2×C10C2×C8C12C2×C6C10C8C2×C4C6C4C22C2
# reps14111422122144222444884168832

Matrix representation of C2×C40⋊S3 in GL3(𝔽241) generated by

24000
02400
00240
,
6400
019645
019625
,
100
063211
030177
,
24000
0189240
05252
G:=sub<GL(3,GF(241))| [240,0,0,0,240,0,0,0,240],[64,0,0,0,196,196,0,45,25],[1,0,0,0,63,30,0,211,177],[240,0,0,0,189,52,0,240,52] >;

C2×C40⋊S3 in GAP, Magma, Sage, TeX

C_2\times C_{40}\rtimes S_3
% in TeX

G:=Group("C2xC40:S3");
// GroupNames label

G:=SmallGroup(480,865);
// by ID

G=gap.SmallGroup(480,865);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,422,58,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^40=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^29,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽