Copied to
clipboard

?

G = Dic10.A4order 480 = 25·3·5

The non-split extension by Dic10 of A4 acting through Inn(Dic10)

non-abelian, soluble

Aliases: Dic10.A4, SL2(𝔽3)⋊6D10, C5⋊(Q8.A4), D48D10⋊C3, C4.A43D5, C4.2(D5×A4), C20.2(C2×A4), Q8.3(C6×D5), Dic5.A45C2, C10.7(C22×A4), Q82D5.1C6, Dic5.3(C2×A4), (C5×SL2(𝔽3))⋊7C22, C2.8(C2×D5×A4), C4○D4.(C3×D5), (C5×C4.A4)⋊3C2, (C5×C4○D4).2C6, (C5×Q8).3(C2×C6), SmallGroup(480,1041)

Series: Derived Chief Lower central Upper central

C1C2C5×Q8 — Dic10.A4
C1C2C10C5×Q8C5×SL2(𝔽3)Dic5.A4 — Dic10.A4
C5×Q8 — Dic10.A4

Subgroups: 686 in 92 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2 [×3], C3, C4, C4 [×3], C22 [×5], C5, C6, C2×C4 [×3], D4 [×6], Q8, Q8, C23 [×2], D5 [×2], C10, C10, C12 [×3], C15, C2×D4 [×3], C4○D4, C4○D4 [×3], Dic5 [×2], C20, C20, D10 [×4], C2×C10, SL2(𝔽3), C3×Q8, C30, 2+ (1+4), Dic10, C4×D5 [×2], D20 [×3], C5⋊D4 [×2], C2×C20, C5×D4, C5×Q8, C22×D5 [×2], C4.A4, C4.A4 [×2], C3×Dic5 [×2], C60, C2×D20, C4○D20, D4×D5 [×2], Q82D5 [×2], C5×C4○D4, Q8.A4, C5×SL2(𝔽3), C3×Dic10, D48D10, Dic5.A4 [×2], C5×C4.A4, Dic10.A4

Quotients:
C1, C2 [×3], C3, C22, C6 [×3], D5, A4, C2×C6, D10, C2×A4 [×3], C3×D5, C22×A4, C6×D5, Q8.A4, D5×A4, C2×D5×A4, Dic10.A4

Generators and relations
 G = < a,b,c,d,e | a20=e3=1, b2=c2=d2=a10, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a10c, ece-1=a10cd, ede-1=c >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 69 11 79)(2 68 12 78)(3 67 13 77)(4 66 14 76)(5 65 15 75)(6 64 16 74)(7 63 17 73)(8 62 18 72)(9 61 19 71)(10 80 20 70)(21 88 31 98)(22 87 32 97)(23 86 33 96)(24 85 34 95)(25 84 35 94)(26 83 36 93)(27 82 37 92)(28 81 38 91)(29 100 39 90)(30 99 40 89)(41 106 51 116)(42 105 52 115)(43 104 53 114)(44 103 54 113)(45 102 55 112)(46 101 56 111)(47 120 57 110)(48 119 58 109)(49 118 59 108)(50 117 60 107)
(1 79 11 69)(2 80 12 70)(3 61 13 71)(4 62 14 72)(5 63 15 73)(6 64 16 74)(7 65 17 75)(8 66 18 76)(9 67 19 77)(10 68 20 78)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)(41 117 51 107)(42 118 52 108)(43 119 53 109)(44 120 54 110)(45 101 55 111)(46 102 56 112)(47 103 57 113)(48 104 58 114)(49 105 59 115)(50 106 60 116)(81 86 91 96)(82 87 92 97)(83 88 93 98)(84 89 94 99)(85 90 95 100)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 83 31 93)(22 84 32 94)(23 85 33 95)(24 86 34 96)(25 87 35 97)(26 88 36 98)(27 89 37 99)(28 90 38 100)(29 91 39 81)(30 92 40 82)(41 102 51 112)(42 103 52 113)(43 104 53 114)(44 105 54 115)(45 106 55 116)(46 107 56 117)(47 108 57 118)(48 109 58 119)(49 110 59 120)(50 111 60 101)(61 76 71 66)(62 77 72 67)(63 78 73 68)(64 79 74 69)(65 80 75 70)
(1 119 83)(2 120 84)(3 101 85)(4 102 86)(5 103 87)(6 104 88)(7 105 89)(8 106 90)(9 107 91)(10 108 92)(11 109 93)(12 110 94)(13 111 95)(14 112 96)(15 113 97)(16 114 98)(17 115 99)(18 116 100)(19 117 81)(20 118 82)(21 74 43)(22 75 44)(23 76 45)(24 77 46)(25 78 47)(26 79 48)(27 80 49)(28 61 50)(29 62 51)(30 63 52)(31 64 53)(32 65 54)(33 66 55)(34 67 56)(35 68 57)(36 69 58)(37 70 59)(38 71 60)(39 72 41)(40 73 42)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,69,11,79)(2,68,12,78)(3,67,13,77)(4,66,14,76)(5,65,15,75)(6,64,16,74)(7,63,17,73)(8,62,18,72)(9,61,19,71)(10,80,20,70)(21,88,31,98)(22,87,32,97)(23,86,33,96)(24,85,34,95)(25,84,35,94)(26,83,36,93)(27,82,37,92)(28,81,38,91)(29,100,39,90)(30,99,40,89)(41,106,51,116)(42,105,52,115)(43,104,53,114)(44,103,54,113)(45,102,55,112)(46,101,56,111)(47,120,57,110)(48,119,58,109)(49,118,59,108)(50,117,60,107), (1,79,11,69)(2,80,12,70)(3,61,13,71)(4,62,14,72)(5,63,15,73)(6,64,16,74)(7,65,17,75)(8,66,18,76)(9,67,19,77)(10,68,20,78)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(41,117,51,107)(42,118,52,108)(43,119,53,109)(44,120,54,110)(45,101,55,111)(46,102,56,112)(47,103,57,113)(48,104,58,114)(49,105,59,115)(50,106,60,116)(81,86,91,96)(82,87,92,97)(83,88,93,98)(84,89,94,99)(85,90,95,100), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,83,31,93)(22,84,32,94)(23,85,33,95)(24,86,34,96)(25,87,35,97)(26,88,36,98)(27,89,37,99)(28,90,38,100)(29,91,39,81)(30,92,40,82)(41,102,51,112)(42,103,52,113)(43,104,53,114)(44,105,54,115)(45,106,55,116)(46,107,56,117)(47,108,57,118)(48,109,58,119)(49,110,59,120)(50,111,60,101)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70), (1,119,83)(2,120,84)(3,101,85)(4,102,86)(5,103,87)(6,104,88)(7,105,89)(8,106,90)(9,107,91)(10,108,92)(11,109,93)(12,110,94)(13,111,95)(14,112,96)(15,113,97)(16,114,98)(17,115,99)(18,116,100)(19,117,81)(20,118,82)(21,74,43)(22,75,44)(23,76,45)(24,77,46)(25,78,47)(26,79,48)(27,80,49)(28,61,50)(29,62,51)(30,63,52)(31,64,53)(32,65,54)(33,66,55)(34,67,56)(35,68,57)(36,69,58)(37,70,59)(38,71,60)(39,72,41)(40,73,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,69,11,79)(2,68,12,78)(3,67,13,77)(4,66,14,76)(5,65,15,75)(6,64,16,74)(7,63,17,73)(8,62,18,72)(9,61,19,71)(10,80,20,70)(21,88,31,98)(22,87,32,97)(23,86,33,96)(24,85,34,95)(25,84,35,94)(26,83,36,93)(27,82,37,92)(28,81,38,91)(29,100,39,90)(30,99,40,89)(41,106,51,116)(42,105,52,115)(43,104,53,114)(44,103,54,113)(45,102,55,112)(46,101,56,111)(47,120,57,110)(48,119,58,109)(49,118,59,108)(50,117,60,107), (1,79,11,69)(2,80,12,70)(3,61,13,71)(4,62,14,72)(5,63,15,73)(6,64,16,74)(7,65,17,75)(8,66,18,76)(9,67,19,77)(10,68,20,78)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(41,117,51,107)(42,118,52,108)(43,119,53,109)(44,120,54,110)(45,101,55,111)(46,102,56,112)(47,103,57,113)(48,104,58,114)(49,105,59,115)(50,106,60,116)(81,86,91,96)(82,87,92,97)(83,88,93,98)(84,89,94,99)(85,90,95,100), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,83,31,93)(22,84,32,94)(23,85,33,95)(24,86,34,96)(25,87,35,97)(26,88,36,98)(27,89,37,99)(28,90,38,100)(29,91,39,81)(30,92,40,82)(41,102,51,112)(42,103,52,113)(43,104,53,114)(44,105,54,115)(45,106,55,116)(46,107,56,117)(47,108,57,118)(48,109,58,119)(49,110,59,120)(50,111,60,101)(61,76,71,66)(62,77,72,67)(63,78,73,68)(64,79,74,69)(65,80,75,70), (1,119,83)(2,120,84)(3,101,85)(4,102,86)(5,103,87)(6,104,88)(7,105,89)(8,106,90)(9,107,91)(10,108,92)(11,109,93)(12,110,94)(13,111,95)(14,112,96)(15,113,97)(16,114,98)(17,115,99)(18,116,100)(19,117,81)(20,118,82)(21,74,43)(22,75,44)(23,76,45)(24,77,46)(25,78,47)(26,79,48)(27,80,49)(28,61,50)(29,62,51)(30,63,52)(31,64,53)(32,65,54)(33,66,55)(34,67,56)(35,68,57)(36,69,58)(37,70,59)(38,71,60)(39,72,41)(40,73,42) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,69,11,79),(2,68,12,78),(3,67,13,77),(4,66,14,76),(5,65,15,75),(6,64,16,74),(7,63,17,73),(8,62,18,72),(9,61,19,71),(10,80,20,70),(21,88,31,98),(22,87,32,97),(23,86,33,96),(24,85,34,95),(25,84,35,94),(26,83,36,93),(27,82,37,92),(28,81,38,91),(29,100,39,90),(30,99,40,89),(41,106,51,116),(42,105,52,115),(43,104,53,114),(44,103,54,113),(45,102,55,112),(46,101,56,111),(47,120,57,110),(48,119,58,109),(49,118,59,108),(50,117,60,107)], [(1,79,11,69),(2,80,12,70),(3,61,13,71),(4,62,14,72),(5,63,15,73),(6,64,16,74),(7,65,17,75),(8,66,18,76),(9,67,19,77),(10,68,20,78),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30),(41,117,51,107),(42,118,52,108),(43,119,53,109),(44,120,54,110),(45,101,55,111),(46,102,56,112),(47,103,57,113),(48,104,58,114),(49,105,59,115),(50,106,60,116),(81,86,91,96),(82,87,92,97),(83,88,93,98),(84,89,94,99),(85,90,95,100)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,83,31,93),(22,84,32,94),(23,85,33,95),(24,86,34,96),(25,87,35,97),(26,88,36,98),(27,89,37,99),(28,90,38,100),(29,91,39,81),(30,92,40,82),(41,102,51,112),(42,103,52,113),(43,104,53,114),(44,105,54,115),(45,106,55,116),(46,107,56,117),(47,108,57,118),(48,109,58,119),(49,110,59,120),(50,111,60,101),(61,76,71,66),(62,77,72,67),(63,78,73,68),(64,79,74,69),(65,80,75,70)], [(1,119,83),(2,120,84),(3,101,85),(4,102,86),(5,103,87),(6,104,88),(7,105,89),(8,106,90),(9,107,91),(10,108,92),(11,109,93),(12,110,94),(13,111,95),(14,112,96),(15,113,97),(16,114,98),(17,115,99),(18,116,100),(19,117,81),(20,118,82),(21,74,43),(22,75,44),(23,76,45),(24,77,46),(25,78,47),(26,79,48),(27,80,49),(28,61,50),(29,62,51),(30,63,52),(31,64,53),(32,65,54),(33,66,55),(34,67,56),(35,68,57),(36,69,58),(37,70,59),(38,71,60),(39,72,41),(40,73,42)])

Matrix representation G ⊆ GL4(𝔽61) generated by

05000
503100
025236
5022729
,
4503436
5903216
45181718
30441660
,
10590
00171
10600
4460170
,
39800
82200
394294
054332
,
6057304
0191841
415700
43491841
G:=sub<GL(4,GF(61))| [0,50,0,50,50,31,25,2,0,0,2,27,0,0,36,29],[45,59,45,30,0,0,18,44,34,32,17,16,36,16,18,60],[1,0,1,44,0,0,0,60,59,17,60,17,0,1,0,0],[39,8,39,0,8,22,4,54,0,0,29,3,0,0,4,32],[60,0,41,43,57,19,57,49,30,18,0,18,4,41,0,41] >;

47 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D5A5B6A6B10A10B10C10D12A12B12C12D12E12F15A15B15C15D20A20B20C20D20E20F30A30B30C30D60A···60H
order12222334444556610101010121212121212151515152020202020203030303060···60
size1163030442610102244221212884040404088882222121288888···8

47 irreducible representations

dim1111112222333444466
type++++++++++++
imageC1C2C2C3C6C6D5D10C3×D5C6×D5A4C2×A4C2×A4Q8.A4Q8.A4Dic10.A4Dic10.A4D5×A4C2×D5×A4
kernelDic10.A4Dic5.A4C5×C4.A4D48D10Q82D5C5×C4○D4C4.A4SL2(𝔽3)C4○D4Q8Dic10Dic5C20C5C5C1C1C4C2
# reps1212422244121124822

In GAP, Magma, Sage, TeX

Dic_{10}.A_4
% in TeX

G:=Group("Dic10.A4");
// GroupNames label

G:=SmallGroup(480,1041);
// by ID

G=gap.SmallGroup(480,1041);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-5,-2,1680,3389,1688,269,584,123,795,382,8069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=e^3=1,b^2=c^2=d^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^10*c,e*c*e^-1=a^10*c*d,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽