extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D5)⋊1(C2×C4) = Dic3⋊4D20 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):1(C2xC4) | 480,471 |
(C6×D5)⋊2(C2×C4) = Dic15⋊13D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):2(C2xC4) | 480,472 |
(C6×D5)⋊3(C2×C4) = Dic3×D20 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):3(C2xC4) | 480,501 |
(C6×D5)⋊4(C2×C4) = D20⋊8Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):4(C2xC4) | 480,510 |
(C6×D5)⋊5(C2×C4) = C15⋊17(C4×D4) | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):5(C2xC4) | 480,517 |
(C6×D5)⋊6(C2×C4) = Dic15⋊9D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):6(C2xC4) | 480,518 |
(C6×D5)⋊7(C2×C4) = S3×D10⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5):7(C2xC4) | 480,548 |
(C6×D5)⋊8(C2×C4) = D30.27D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5):8(C2xC4) | 480,549 |
(C6×D5)⋊9(C2×C4) = Dic3×C5⋊D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):9(C2xC4) | 480,629 |
(C6×D5)⋊10(C2×C4) = Dic15⋊16D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5):10(C2xC4) | 480,635 |
(C6×D5)⋊11(C2×C4) = F5×C3⋊D4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | 8 | (C6xD5):11(C2xC4) | 480,1010 |
(C6×D5)⋊12(C2×C4) = S3×C22⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | 8+ | (C6xD5):12(C2xC4) | 480,1011 |
(C6×D5)⋊13(C2×C4) = C3⋊D4⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | 8 | (C6xD5):13(C2xC4) | 480,1012 |
(C6×D5)⋊14(C2×C4) = C22×S3×F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | | (C6xD5):14(C2xC4) | 480,1197 |
(C6×D5)⋊15(C2×C4) = D4×C3⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | 8 | (C6xD5):15(C2xC4) | 480,1067 |
(C6×D5)⋊16(C2×C4) = C3×D4×F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 60 | 8 | (C6xD5):16(C2xC4) | 480,1054 |
(C6×D5)⋊17(C2×C4) = C4×C15⋊D4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):17(C2xC4) | 480,515 |
(C6×D5)⋊18(C2×C4) = D6⋊(C4×D5) | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):18(C2xC4) | 480,516 |
(C6×D5)⋊19(C2×C4) = C4×C3⋊D20 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):19(C2xC4) | 480,519 |
(C6×D5)⋊20(C2×C4) = C15⋊20(C4×D4) | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):20(C2xC4) | 480,520 |
(C6×D5)⋊21(C2×C4) = S3×C2×C4×D5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):21(C2xC4) | 480,1086 |
(C6×D5)⋊22(C2×C4) = C12×D20 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):22(C2xC4) | 480,666 |
(C6×D5)⋊23(C2×C4) = C3×Dic5⋊4D4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):23(C2xC4) | 480,674 |
(C6×D5)⋊24(C2×C4) = C3×D20⋊8C4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):24(C2xC4) | 480,686 |
(C6×D5)⋊25(C2×C4) = C12×C5⋊D4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):25(C2xC4) | 480,721 |
(C6×D5)⋊26(C2×C4) = C2×D10⋊Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):26(C2xC4) | 480,611 |
(C6×D5)⋊27(C2×C4) = D5×C6.D4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):27(C2xC4) | 480,623 |
(C6×D5)⋊28(C2×C4) = C22×D5×Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):28(C2xC4) | 480,1112 |
(C6×D5)⋊29(C2×C4) = C3×D5×C22⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):29(C2xC4) | 480,673 |
(C6×D5)⋊30(C2×C4) = C6×D10⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5):30(C2xC4) | 480,720 |
(C6×D5)⋊31(C2×C4) = C2×D10.D6 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):31(C2xC4) | 480,1072 |
(C6×D5)⋊32(C2×C4) = C23×C3⋊F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):32(C2xC4) | 480,1206 |
(C6×D5)⋊33(C2×C4) = C6×C22⋊F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):33(C2xC4) | 480,1059 |
(C6×D5)⋊34(C2×C4) = F5×C22×C6 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5):34(C2xC4) | 480,1205 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×D5).1(C2×C4) = S3×C8⋊D5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).1(C2xC4) | 480,321 |
(C6×D5).2(C2×C4) = C40⋊D6 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).2(C2xC4) | 480,322 |
(C6×D5).3(C2×C4) = C40.55D6 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).3(C2xC4) | 480,343 |
(C6×D5).4(C2×C4) = C40.35D6 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).4(C2xC4) | 480,344 |
(C6×D5).5(C2×C4) = D20.3Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).5(C2xC4) | 480,359 |
(C6×D5).6(C2×C4) = D20.2Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).6(C2xC4) | 480,360 |
(C6×D5).7(C2×C4) = (D5×Dic3)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5).7(C2xC4) | 480,469 |
(C6×D5).8(C2×C4) = D10.19(C4×S3) | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | | (C6xD5).8(C2xC4) | 480,470 |
(C6×D5).9(C2×C4) = F5×C3⋊C8 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).9(C2xC4) | 480,223 |
(C6×D5).10(C2×C4) = C30.C42 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).10(C2xC4) | 480,224 |
(C6×D5).11(C2×C4) = C30.3C42 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).11(C2xC4) | 480,225 |
(C6×D5).12(C2×C4) = C30.4C42 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).12(C2xC4) | 480,226 |
(C6×D5).13(C2×C4) = D10.20D12 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5).13(C2xC4) | 480,243 |
(C6×D5).14(C2×C4) = S3×D5⋊C8 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).14(C2xC4) | 480,986 |
(C6×D5).15(C2×C4) = D12.2F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8- | (C6xD5).15(C2xC4) | 480,987 |
(C6×D5).16(C2×C4) = S3×C4.F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).16(C2xC4) | 480,988 |
(C6×D5).17(C2×C4) = D12.F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8- | (C6xD5).17(C2xC4) | 480,989 |
(C6×D5).18(C2×C4) = D60.C4 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8+ | (C6xD5).18(C2xC4) | 480,990 |
(C6×D5).19(C2×C4) = D15⋊M4(2) | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).19(C2xC4) | 480,991 |
(C6×D5).20(C2×C4) = Dic6.F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8+ | (C6xD5).20(C2xC4) | 480,992 |
(C6×D5).21(C2×C4) = C5⋊C8⋊D6 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8 | (C6xD5).21(C2xC4) | 480,993 |
(C6×D5).22(C2×C4) = C2×Dic3×F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5).22(C2xC4) | 480,998 |
(C6×D5).23(C2×C4) = C22⋊F5.S3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | 8- | (C6xD5).23(C2xC4) | 480,999 |
(C6×D5).24(C2×C4) = C2×D6⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5).24(C2xC4) | 480,1000 |
(C6×D5).25(C2×C4) = C2×Dic3⋊F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 120 | | (C6xD5).25(C2xC4) | 480,1001 |
(C6×D5).26(C2×C4) = Dic10.Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8 | (C6xD5).26(C2xC4) | 480,1066 |
(C6×D5).27(C2×C4) = D20.Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8 | (C6xD5).27(C2xC4) | 480,1068 |
(C6×D5).28(C2×C4) = C3×D4.F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8 | (C6xD5).28(C2xC4) | 480,1053 |
(C6×D5).29(C2×C4) = C3×Q8.F5 | φ: C2×C4/C2 → C22 ⊆ Out C6×D5 | 240 | 8 | (C6xD5).29(C2xC4) | 480,1055 |
(C6×D5).30(C2×C4) = S3×C8×D5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).30(C2xC4) | 480,319 |
(C6×D5).31(C2×C4) = D5×C8⋊S3 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).31(C2xC4) | 480,320 |
(C6×D5).32(C2×C4) = C40.54D6 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).32(C2xC4) | 480,341 |
(C6×D5).33(C2×C4) = C40.34D6 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).33(C2xC4) | 480,342 |
(C6×D5).34(C2×C4) = C4×D5×Dic3 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).34(C2xC4) | 480,467 |
(C6×D5).35(C2×C4) = D5×Dic3⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).35(C2xC4) | 480,468 |
(C6×D5).36(C2×C4) = D5×D6⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).36(C2xC4) | 480,547 |
(C6×D5).37(C2×C4) = C3×D20.3C4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | 2 | (C6xD5).37(C2xC4) | 480,694 |
(C6×D5).38(C2×C4) = C3×D20.2C4 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 240 | 4 | (C6xD5).38(C2xC4) | 480,700 |
(C6×D5).39(C2×C4) = C8×C3⋊F5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).39(C2xC4) | 480,296 |
(C6×D5).40(C2×C4) = C24⋊F5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).40(C2xC4) | 480,297 |
(C6×D5).41(C2×C4) = D10.10D12 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).41(C2xC4) | 480,311 |
(C6×D5).42(C2×C4) = C2×C4×C3⋊F5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).42(C2xC4) | 480,1063 |
(C6×D5).43(C2×C4) = F5×C24 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).43(C2xC4) | 480,271 |
(C6×D5).44(C2×C4) = C3×C8⋊F5 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).44(C2xC4) | 480,272 |
(C6×D5).45(C2×C4) = C3×D10.3Q8 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).45(C2xC4) | 480,286 |
(C6×D5).46(C2×C4) = F5×C2×C12 | φ: C2×C4/C4 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).46(C2xC4) | 480,1050 |
(C6×D5).47(C2×C4) = C2×D5×C3⋊C8 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).47(C2xC4) | 480,357 |
(C6×D5).48(C2×C4) = D5×C4.Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).48(C2xC4) | 480,358 |
(C6×D5).49(C2×C4) = C2×C20.32D6 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).49(C2xC4) | 480,369 |
(C6×D5).50(C2×C4) = (D5×C12)⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).50(C2xC4) | 480,433 |
(C6×D5).51(C2×C4) = (C4×D5)⋊Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).51(C2xC4) | 480,434 |
(C6×D5).52(C2×C4) = D5×C4⋊Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).52(C2xC4) | 480,488 |
(C6×D5).53(C2×C4) = C3×C42⋊D5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).53(C2xC4) | 480,665 |
(C6×D5).54(C2×C4) = C3×C4⋊C4⋊7D5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).54(C2xC4) | 480,685 |
(C6×D5).55(C2×C4) = C6×C8⋊D5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).55(C2xC4) | 480,693 |
(C6×D5).56(C2×C4) = C2×C60.C4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).56(C2xC4) | 480,1060 |
(C6×D5).57(C2×C4) = C2×C12.F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).57(C2xC4) | 480,1061 |
(C6×D5).58(C2×C4) = C60.59(C2×C4) | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).58(C2xC4) | 480,1062 |
(C6×D5).59(C2×C4) = C2×C60⋊C4 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).59(C2xC4) | 480,1064 |
(C6×D5).60(C2×C4) = (C2×C12)⋊6F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).60(C2xC4) | 480,1065 |
(C6×D5).61(C2×C4) = C6×D5⋊C8 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).61(C2xC4) | 480,1047 |
(C6×D5).62(C2×C4) = C6×C4.F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 240 | | (C6xD5).62(C2xC4) | 480,1048 |
(C6×D5).63(C2×C4) = C3×D5⋊M4(2) | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).63(C2xC4) | 480,1049 |
(C6×D5).64(C2×C4) = C6×C4⋊F5 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | | (C6xD5).64(C2xC4) | 480,1051 |
(C6×D5).65(C2×C4) = C3×D10.C23 | φ: C2×C4/C22 → C2 ⊆ Out C6×D5 | 120 | 4 | (C6xD5).65(C2xC4) | 480,1052 |
(C6×D5).66(C2×C4) = D5×C4×C12 | φ: trivial image | 240 | | (C6xD5).66(C2xC4) | 480,664 |
(C6×D5).67(C2×C4) = C3×D5×C4⋊C4 | φ: trivial image | 240 | | (C6xD5).67(C2xC4) | 480,684 |
(C6×D5).68(C2×C4) = D5×C2×C24 | φ: trivial image | 240 | | (C6xD5).68(C2xC4) | 480,692 |
(C6×D5).69(C2×C4) = C3×D5×M4(2) | φ: trivial image | 120 | 4 | (C6xD5).69(C2xC4) | 480,699 |