Copied to
clipboard

G = C42.30Q8order 128 = 27

30th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.30Q8, C4⋊C810C4, C41(C4.Q8), C4⋊C4.16Q8, C4.36(C4×Q8), C4⋊C4.218D4, C4.144(C4×D4), C4.17(C4⋊Q8), C42.151(C2×C4), C2.4(Q8⋊Q8), C2.4(D42Q8), C2.4(C4⋊SD16), (C2×C4).104SD16, C23.793(C2×D4), (C22×C4).760D4, C429C4.10C2, C2.4(D4.D4), C4.16(C42.C2), C22.69(C2×SD16), C22.92(C8⋊C22), C22.4Q16.42C2, (C2×C42).311C22, (C22×C8).315C22, C22.80(C22⋊Q8), C22.139(C4⋊D4), (C22×C4).1397C23, C22.81(C8.C22), C2.14(M4(2)⋊C4), C2.15(C23.65C23), (C4×C4⋊C4).23C2, (C2×C4⋊C8).47C2, C2.10(C2×C4.Q8), (C2×C8).114(C2×C4), (C2×C4).209(C2×Q8), (C2×C4.Q8).20C2, (C2×C4).136(C4⋊C4), (C2×C4).1014(C2×D4), (C2×C4⋊C4).79C22, C22.115(C2×C4⋊C4), (C2×C4).867(C4○D4), (C2×C4).553(C22×C4), SmallGroup(128,680)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.30Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.30Q8
C1C2C2×C4 — C42.30Q8
C1C23C2×C42 — C42.30Q8
C1C2C2C22×C4 — C42.30Q8

Generators and relations for C42.30Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=b2c2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=bc-1 >

Subgroups: 236 in 128 conjugacy classes, 72 normal (36 characteristic)
C1, C2 [×7], C4 [×4], C4 [×4], C4 [×8], C22 [×7], C8 [×4], C2×C4 [×6], C2×C4 [×8], C2×C4 [×16], C23, C42 [×4], C42 [×2], C4⋊C4 [×4], C4⋊C4 [×10], C2×C8 [×4], C2×C8 [×4], C22×C4 [×3], C22×C4 [×4], C2.C42, C4⋊C8 [×4], C4.Q8 [×4], C2×C42, C2×C42, C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C2×C4⋊C4 [×2], C22×C8 [×2], C22.4Q16 [×2], C4×C4⋊C4, C429C4, C2×C4⋊C8, C2×C4.Q8 [×2], C42.30Q8
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], Q8 [×4], C23, C4⋊C4 [×4], SD16 [×4], C22×C4, C2×D4 [×2], C2×Q8 [×2], C4○D4 [×2], C4.Q8 [×4], C2×C4⋊C4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C42.C2, C4⋊Q8, C2×SD16 [×2], C8⋊C22, C8.C22, C23.65C23, C2×C4.Q8, M4(2)⋊C4, C4⋊SD16, D4.D4, Q8⋊Q8, D42Q8, C42.30Q8

Smallest permutation representation of C42.30Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 39 29 13)(2 40 30 14)(3 37 31 15)(4 38 32 16)(5 19 108 120)(6 20 105 117)(7 17 106 118)(8 18 107 119)(9 49 35 25)(10 50 36 26)(11 51 33 27)(12 52 34 28)(21 126 122 110)(22 127 123 111)(23 128 124 112)(24 125 121 109)(41 57 71 81)(42 58 72 82)(43 59 69 83)(44 60 70 84)(45 61 67 53)(46 62 68 54)(47 63 65 55)(48 64 66 56)(73 103 113 85)(74 104 114 86)(75 101 115 87)(76 102 116 88)(77 89 93 99)(78 90 94 100)(79 91 95 97)(80 92 96 98)
(1 71 35 53)(2 72 36 54)(3 69 33 55)(4 70 34 56)(5 96 124 88)(6 93 121 85)(7 94 122 86)(8 95 123 87)(9 61 29 41)(10 62 30 42)(11 63 31 43)(12 64 32 44)(13 81 49 45)(14 82 50 46)(15 83 51 47)(16 84 52 48)(17 90 110 114)(18 91 111 115)(19 92 112 116)(20 89 109 113)(21 104 106 78)(22 101 107 79)(23 102 108 80)(24 103 105 77)(25 67 39 57)(26 68 40 58)(27 65 37 59)(28 66 38 60)(73 117 99 125)(74 118 100 126)(75 119 97 127)(76 120 98 128)
(1 87 9 79)(2 86 10 78)(3 85 11 77)(4 88 12 80)(5 84 23 66)(6 83 24 65)(7 82 21 68)(8 81 22 67)(13 75 25 91)(14 74 26 90)(15 73 27 89)(16 76 28 92)(17 72 126 62)(18 71 127 61)(19 70 128 64)(20 69 125 63)(29 101 35 95)(30 104 36 94)(31 103 33 93)(32 102 34 96)(37 113 51 99)(38 116 52 98)(39 115 49 97)(40 114 50 100)(41 111 53 119)(42 110 54 118)(43 109 55 117)(44 112 56 120)(45 107 57 123)(46 106 58 122)(47 105 59 121)(48 108 60 124)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,29,13)(2,40,30,14)(3,37,31,15)(4,38,32,16)(5,19,108,120)(6,20,105,117)(7,17,106,118)(8,18,107,119)(9,49,35,25)(10,50,36,26)(11,51,33,27)(12,52,34,28)(21,126,122,110)(22,127,123,111)(23,128,124,112)(24,125,121,109)(41,57,71,81)(42,58,72,82)(43,59,69,83)(44,60,70,84)(45,61,67,53)(46,62,68,54)(47,63,65,55)(48,64,66,56)(73,103,113,85)(74,104,114,86)(75,101,115,87)(76,102,116,88)(77,89,93,99)(78,90,94,100)(79,91,95,97)(80,92,96,98), (1,71,35,53)(2,72,36,54)(3,69,33,55)(4,70,34,56)(5,96,124,88)(6,93,121,85)(7,94,122,86)(8,95,123,87)(9,61,29,41)(10,62,30,42)(11,63,31,43)(12,64,32,44)(13,81,49,45)(14,82,50,46)(15,83,51,47)(16,84,52,48)(17,90,110,114)(18,91,111,115)(19,92,112,116)(20,89,109,113)(21,104,106,78)(22,101,107,79)(23,102,108,80)(24,103,105,77)(25,67,39,57)(26,68,40,58)(27,65,37,59)(28,66,38,60)(73,117,99,125)(74,118,100,126)(75,119,97,127)(76,120,98,128), (1,87,9,79)(2,86,10,78)(3,85,11,77)(4,88,12,80)(5,84,23,66)(6,83,24,65)(7,82,21,68)(8,81,22,67)(13,75,25,91)(14,74,26,90)(15,73,27,89)(16,76,28,92)(17,72,126,62)(18,71,127,61)(19,70,128,64)(20,69,125,63)(29,101,35,95)(30,104,36,94)(31,103,33,93)(32,102,34,96)(37,113,51,99)(38,116,52,98)(39,115,49,97)(40,114,50,100)(41,111,53,119)(42,110,54,118)(43,109,55,117)(44,112,56,120)(45,107,57,123)(46,106,58,122)(47,105,59,121)(48,108,60,124)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,39,29,13)(2,40,30,14)(3,37,31,15)(4,38,32,16)(5,19,108,120)(6,20,105,117)(7,17,106,118)(8,18,107,119)(9,49,35,25)(10,50,36,26)(11,51,33,27)(12,52,34,28)(21,126,122,110)(22,127,123,111)(23,128,124,112)(24,125,121,109)(41,57,71,81)(42,58,72,82)(43,59,69,83)(44,60,70,84)(45,61,67,53)(46,62,68,54)(47,63,65,55)(48,64,66,56)(73,103,113,85)(74,104,114,86)(75,101,115,87)(76,102,116,88)(77,89,93,99)(78,90,94,100)(79,91,95,97)(80,92,96,98), (1,71,35,53)(2,72,36,54)(3,69,33,55)(4,70,34,56)(5,96,124,88)(6,93,121,85)(7,94,122,86)(8,95,123,87)(9,61,29,41)(10,62,30,42)(11,63,31,43)(12,64,32,44)(13,81,49,45)(14,82,50,46)(15,83,51,47)(16,84,52,48)(17,90,110,114)(18,91,111,115)(19,92,112,116)(20,89,109,113)(21,104,106,78)(22,101,107,79)(23,102,108,80)(24,103,105,77)(25,67,39,57)(26,68,40,58)(27,65,37,59)(28,66,38,60)(73,117,99,125)(74,118,100,126)(75,119,97,127)(76,120,98,128), (1,87,9,79)(2,86,10,78)(3,85,11,77)(4,88,12,80)(5,84,23,66)(6,83,24,65)(7,82,21,68)(8,81,22,67)(13,75,25,91)(14,74,26,90)(15,73,27,89)(16,76,28,92)(17,72,126,62)(18,71,127,61)(19,70,128,64)(20,69,125,63)(29,101,35,95)(30,104,36,94)(31,103,33,93)(32,102,34,96)(37,113,51,99)(38,116,52,98)(39,115,49,97)(40,114,50,100)(41,111,53,119)(42,110,54,118)(43,109,55,117)(44,112,56,120)(45,107,57,123)(46,106,58,122)(47,105,59,121)(48,108,60,124) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,39,29,13),(2,40,30,14),(3,37,31,15),(4,38,32,16),(5,19,108,120),(6,20,105,117),(7,17,106,118),(8,18,107,119),(9,49,35,25),(10,50,36,26),(11,51,33,27),(12,52,34,28),(21,126,122,110),(22,127,123,111),(23,128,124,112),(24,125,121,109),(41,57,71,81),(42,58,72,82),(43,59,69,83),(44,60,70,84),(45,61,67,53),(46,62,68,54),(47,63,65,55),(48,64,66,56),(73,103,113,85),(74,104,114,86),(75,101,115,87),(76,102,116,88),(77,89,93,99),(78,90,94,100),(79,91,95,97),(80,92,96,98)], [(1,71,35,53),(2,72,36,54),(3,69,33,55),(4,70,34,56),(5,96,124,88),(6,93,121,85),(7,94,122,86),(8,95,123,87),(9,61,29,41),(10,62,30,42),(11,63,31,43),(12,64,32,44),(13,81,49,45),(14,82,50,46),(15,83,51,47),(16,84,52,48),(17,90,110,114),(18,91,111,115),(19,92,112,116),(20,89,109,113),(21,104,106,78),(22,101,107,79),(23,102,108,80),(24,103,105,77),(25,67,39,57),(26,68,40,58),(27,65,37,59),(28,66,38,60),(73,117,99,125),(74,118,100,126),(75,119,97,127),(76,120,98,128)], [(1,87,9,79),(2,86,10,78),(3,85,11,77),(4,88,12,80),(5,84,23,66),(6,83,24,65),(7,82,21,68),(8,81,22,67),(13,75,25,91),(14,74,26,90),(15,73,27,89),(16,76,28,92),(17,72,126,62),(18,71,127,61),(19,70,128,64),(20,69,125,63),(29,101,35,95),(30,104,36,94),(31,103,33,93),(32,102,34,96),(37,113,51,99),(38,116,52,98),(39,115,49,97),(40,114,50,100),(41,111,53,119),(42,110,54,118),(43,109,55,117),(44,112,56,120),(45,107,57,123),(46,106,58,122),(47,105,59,121),(48,108,60,124)])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim111111122222244
type++++++-+-++-
imageC1C2C2C2C2C2C4Q8D4Q8D4SD16C4○D4C8⋊C22C8.C22
kernelC42.30Q8C22.4Q16C4×C4⋊C4C429C4C2×C4⋊C8C2×C4.Q8C4⋊C8C42C4⋊C4C4⋊C4C22×C4C2×C4C2×C4C22C22
# reps121112822228411

Matrix representation of C42.30Q8 in GL6(𝔽17)

100000
010000
0016000
0001600
000012
00001616
,
100000
010000
0001600
001000
0000160
0000016
,
010000
1600000
0013600
006400
0000139
000044
,
1010000
170000
00101600
0016700
0000160
000011

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,16,0,0,0,0,2,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,13,6,0,0,0,0,6,4,0,0,0,0,0,0,13,4,0,0,0,0,9,4],[10,1,0,0,0,0,1,7,0,0,0,0,0,0,10,16,0,0,0,0,16,7,0,0,0,0,0,0,16,1,0,0,0,0,0,1] >;

C42.30Q8 in GAP, Magma, Sage, TeX

C_4^2._{30}Q_8
% in TeX

G:=Group("C4^2.30Q8");
// GroupNames label

G:=SmallGroup(128,680);
// by ID

G=gap.SmallGroup(128,680);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,680,422,100,2019,1018,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2*c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽