Copied to
clipboard

G = M4(2)⋊14D4order 128 = 27

1st semidirect product of M4(2) and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M4(2)⋊14D4, C24.111D4, C86(C2×D4), C8⋊D41C2, C82D42C2, C87D425C2, C88D411C2, C4.Q83C22, (C2×D8)⋊18C22, C4⋊C4.24C23, C2.D814C22, C4⋊D455C22, C221(C8⋊C22), (C2×C8).251C23, (C2×C4).259C24, (C22×C8)⋊20C22, (C2×D4).62C23, C23.384(C2×D4), (C22×C4).429D4, C4.153(C22×D4), C22⋊Q867C22, (C2×Q8).50C23, C4.172(C4⋊D4), D4⋊C450C22, C22.19C248C2, Q8⋊C451C22, (C2×SD16)⋊11C22, (C22×M4(2))⋊4C2, M4(2)⋊C412C2, C23.36D440C2, C23.37D433C2, C22.84(C4⋊D4), (C2×M4(2))⋊52C22, (C22×C4).981C23, (C23×C4).551C22, C22.519(C22×D4), C2.15(D8⋊C22), (C22×D4).348C22, C42⋊C2.108C22, C4.26(C2×C4○D4), (C2×C4⋊D4)⋊48C2, (C2×C8⋊C22)⋊18C2, (C2×C4).475(C2×D4), C2.77(C2×C4⋊D4), C2.19(C2×C8⋊C22), (C2×C4).477(C4○D4), (C2×C4⋊C4).591C22, (C2×C4○D4).125C22, SmallGroup(128,1787)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2)⋊14D4
C1C2C22C2×C4C22×C4C23×C4C22×M4(2) — M4(2)⋊14D4
C1C2C2×C4 — M4(2)⋊14D4
C1C22C23×C4 — M4(2)⋊14D4
C1C2C2C2×C4 — M4(2)⋊14D4

Generators and relations for M4(2)⋊14D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=a5, cac-1=dad=a-1, bc=cb, bd=db, dcd=c-1 >

Subgroups: 588 in 274 conjugacy classes, 102 normal (44 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C22×C8, C2×M4(2), C2×M4(2), C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C23×C4, C22×D4, C22×D4, C2×C4○D4, C23.36D4, C23.37D4, M4(2)⋊C4, C88D4, C87D4, C8⋊D4, C82D4, C2×C4⋊D4, C22.19C24, C22×M4(2), C2×C8⋊C22, M4(2)⋊14D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C8⋊C22, C22×D4, C2×C4○D4, C2×C4⋊D4, C2×C8⋊C22, D8⋊C22, M4(2)⋊14D4

Smallest permutation representation of M4(2)⋊14D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9)(2 14)(3 11)(4 16)(5 13)(6 10)(7 15)(8 12)(17 32)(18 29)(19 26)(20 31)(21 28)(22 25)(23 30)(24 27)
(1 18 9 29)(2 17 10 28)(3 24 11 27)(4 23 12 26)(5 22 13 25)(6 21 14 32)(7 20 15 31)(8 19 16 30)
(2 8)(3 7)(4 6)(10 16)(11 15)(12 14)(17 30)(18 29)(19 28)(20 27)(21 26)(22 25)(23 32)(24 31)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,32)(18,29)(19,26)(20,31)(21,28)(22,25)(23,30)(24,27), (1,18,9,29)(2,17,10,28)(3,24,11,27)(4,23,12,26)(5,22,13,25)(6,21,14,32)(7,20,15,31)(8,19,16,30), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9)(2,14)(3,11)(4,16)(5,13)(6,10)(7,15)(8,12)(17,32)(18,29)(19,26)(20,31)(21,28)(22,25)(23,30)(24,27), (1,18,9,29)(2,17,10,28)(3,24,11,27)(4,23,12,26)(5,22,13,25)(6,21,14,32)(7,20,15,31)(8,19,16,30), (2,8)(3,7)(4,6)(10,16)(11,15)(12,14)(17,30)(18,29)(19,28)(20,27)(21,26)(22,25)(23,32)(24,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9),(2,14),(3,11),(4,16),(5,13),(6,10),(7,15),(8,12),(17,32),(18,29),(19,26),(20,31),(21,28),(22,25),(23,30),(24,27)], [(1,18,9,29),(2,17,10,28),(3,24,11,27),(4,23,12,26),(5,22,13,25),(6,21,14,32),(7,20,15,31),(8,19,16,30)], [(2,8),(3,7),(4,6),(10,16),(11,15),(12,14),(17,30),(18,29),(19,28),(20,27),(21,26),(22,25),(23,32),(24,31)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A···4F4G4H···4L8A···8H
order1222222222224···444···48···8
size1111222248882···248···84···4

32 irreducible representations

dim111111111111222244
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4C4○D4C8⋊C22D8⋊C22
kernelM4(2)⋊14D4C23.36D4C23.37D4M4(2)⋊C4C88D4C87D4C8⋊D4C82D4C2×C4⋊D4C22.19C24C22×M4(2)C2×C8⋊C22M4(2)C22×C4C24C2×C4C22C2
# reps111122221111431422

Matrix representation of M4(2)⋊14D4 in GL6(𝔽17)

1600000
0160000
0011600
00215160
0001116
0021600
,
100000
010000
00160161
00016152
000010
000001
,
1150000
1160000
0040013
008131313
000040
0000013
,
100000
1160000
0011600
0001600
000001
000010

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,2,0,2,0,0,16,15,1,16,0,0,0,16,1,0,0,0,0,0,16,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,16,15,1,0,0,0,1,2,0,1],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,4,8,0,0,0,0,0,13,0,0,0,0,0,13,4,0,0,0,13,13,0,13],[1,1,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

M4(2)⋊14D4 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_{14}D_4
% in TeX

G:=Group("M4(2):14D4");
// GroupNames label

G:=SmallGroup(128,1787);
// by ID

G=gap.SmallGroup(128,1787);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,1018,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^5,c*a*c^-1=d*a*d=a^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽