Copied to
clipboard

G = Q169D4order 128 = 27

3rd semidirect product of Q16 and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q169D4, C42.37C23, C4.1242+ 1+4, C2.54D42, (D4×Q8)⋊3C2, C89D47C2, C8.33(C2×D4), C88D419C2, C4⋊C4.149D4, Q8.20(C2×D4), Q8⋊D416C2, C42Q1635C2, (C2×D4).308D4, C8.D420C2, C8.2D419C2, C4⋊C8.93C22, (C2×C8).87C23, Q85D4.1C2, C2.38(Q8○D8), C22⋊C4.41D4, C4.84(C22×D4), Q16⋊C419C2, D4.7D436C2, C4⋊C4.209C23, (C2×C4).468C24, Q8.D436C2, C22⋊Q1627C2, (C22×Q16)⋊20C2, C23.462(C2×D4), C4⋊Q8.134C22, C8⋊C4.37C22, C4.Q8.52C22, (C4×D4).144C22, D4⋊C4.9C22, (C2×D4).208C23, C4⋊D4.59C22, C22⋊C8.71C22, C223(C8.C22), (C2×Q16).81C22, (C2×Q8).387C23, (C4×Q8).138C22, C22⋊Q8.58C22, (C22×C4).319C23, (C22×C8).284C22, Q8⋊C4.66C22, (C2×SD16).48C22, C4.4D4.53C22, C22.728(C22×D4), (C22×Q8).329C22, (C2×M4(2)).103C22, (C2×C4).592(C2×D4), (C2×C8.C22)⋊28C2, C2.71(C2×C8.C22), (C2×C4○D4).185C22, SmallGroup(128,2002)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — Q169D4
C1C2C22C2×C4C2×Q8C22×Q8C22×Q16 — Q169D4
C1C2C2×C4 — Q169D4
C1C22C4×D4 — Q169D4
C1C2C2C2×C4 — Q169D4

Generators and relations for Q169D4
 G = < a,b,c,d | a8=c4=d2=1, b2=a4, bab-1=a-1, cac-1=dad=a3, bc=cb, bd=db, dcd=c-1 >

Subgroups: 448 in 236 conjugacy classes, 96 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C4.4D4, C4.4D4, C4⋊Q8, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C2×Q16, C2×Q16, C8.C22, C22×Q8, C2×C4○D4, C89D4, Q16⋊C4, Q8⋊D4, C22⋊Q16, D4.7D4, C42Q16, Q8.D4, C88D4, C8.D4, C8.2D4, Q85D4, D4×Q8, C22×Q16, C2×C8.C22, Q169D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C8.C22, C22×D4, 2+ 1+4, D42, C2×C8.C22, Q8○D8, Q169D4

Character table of Q169D4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D8E8F
 size 11112248224444444488888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-1-11111-1111-111-11-1-111-1-1-11    linear of order 2
ρ31111111-1111-111-1111-1111-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-1-11111-1-11-11-11-1-11-11-1-1111-1    linear of order 2
ρ51111-1-1111111-111-11-1-11-1-1-111-1-11-1    linear of order 2
ρ6111111-1-11111111-1-1-1-1-1-1111111-1-1    linear of order 2
ρ71111-1-11-1111-1-11-1-11-111-1-11-1-111-11    linear of order 2
ρ8111111-11111-111-1-1-1-11-1-11-1-1-1-1-111    linear of order 2
ρ91111-1-1-1-111-11-1-111-1111-11-1-1-1111-1    linear of order 2
ρ101111111111-111-111111-1-1-11-1-1-1-1-1-1    linear of order 2
ρ111111-1-1-1111-1-1-1-1-11-11-11-11111-1-1-11    linear of order 2
ρ121111111-111-1-11-1-1111-1-1-1-1-1111111    linear of order 2
ρ13111111-1-111-111-11-1-1-1-111-11-1-1-1-111    linear of order 2
ρ141111-1-11111-11-1-11-11-1-1-111-1-1-111-11    linear of order 2
ρ15111111-1111-1-11-1-1-1-1-1111-1-11111-1-1    linear of order 2
ρ161111-1-11-111-1-1-1-1-1-11-11-111111-1-11-1    linear of order 2
ρ172-22-200002-2-2202-200000000-220000    orthogonal lifted from D4
ρ182222-2-2-20-2-20020022-200000000000    orthogonal lifted from D4
ρ192222-2-220-2-200200-2-2200000000000    orthogonal lifted from D4
ρ202-22-200002-2220-2-2000000002-20000    orthogonal lifted from D4
ρ21222222-20-2-200-200-22200000000000    orthogonal lifted from D4
ρ2222222220-2-200-2002-2-200000000000    orthogonal lifted from D4
ρ232-22-200002-22-20-2200000000-220000    orthogonal lifted from D4
ρ242-22-200002-2-2-2022000000002-20000    orthogonal lifted from D4
ρ254-44-40000-440000000000000000000    orthogonal lifted from 2+ 1+4
ρ264-4-444-400000000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ274-4-44-4400000000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2844-4-400000000000000000000022-2200    symplectic lifted from Q8○D8, Schur index 2
ρ2944-4-4000000000000000000000-222200    symplectic lifted from Q8○D8, Schur index 2

Smallest permutation representation of Q169D4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 11 5 15)(2 10 6 14)(3 9 7 13)(4 16 8 12)(17 49 21 53)(18 56 22 52)(19 55 23 51)(20 54 24 50)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)(41 62 45 58)(42 61 46 57)(43 60 47 64)(44 59 48 63)
(1 26 19 48)(2 29 20 43)(3 32 21 46)(4 27 22 41)(5 30 23 44)(6 25 24 47)(7 28 17 42)(8 31 18 45)(9 33 53 57)(10 36 54 60)(11 39 55 63)(12 34 56 58)(13 37 49 61)(14 40 50 64)(15 35 51 59)(16 38 52 62)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 21)(18 24)(20 22)(25 45)(26 48)(27 43)(28 46)(29 41)(30 44)(31 47)(32 42)(33 61)(34 64)(35 59)(36 62)(37 57)(38 60)(39 63)(40 58)(49 53)(50 56)(52 54)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11,5,15)(2,10,6,14)(3,9,7,13)(4,16,8,12)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63), (1,26,19,48)(2,29,20,43)(3,32,21,46)(4,27,22,41)(5,30,23,44)(6,25,24,47)(7,28,17,42)(8,31,18,45)(9,33,53,57)(10,36,54,60)(11,39,55,63)(12,34,56,58)(13,37,49,61)(14,40,50,64)(15,35,51,59)(16,38,52,62), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,45)(26,48)(27,43)(28,46)(29,41)(30,44)(31,47)(32,42)(33,61)(34,64)(35,59)(36,62)(37,57)(38,60)(39,63)(40,58)(49,53)(50,56)(52,54)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11,5,15)(2,10,6,14)(3,9,7,13)(4,16,8,12)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63), (1,26,19,48)(2,29,20,43)(3,32,21,46)(4,27,22,41)(5,30,23,44)(6,25,24,47)(7,28,17,42)(8,31,18,45)(9,33,53,57)(10,36,54,60)(11,39,55,63)(12,34,56,58)(13,37,49,61)(14,40,50,64)(15,35,51,59)(16,38,52,62), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22)(25,45)(26,48)(27,43)(28,46)(29,41)(30,44)(31,47)(32,42)(33,61)(34,64)(35,59)(36,62)(37,57)(38,60)(39,63)(40,58)(49,53)(50,56)(52,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,11,5,15),(2,10,6,14),(3,9,7,13),(4,16,8,12),(17,49,21,53),(18,56,22,52),(19,55,23,51),(20,54,24,50),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33),(41,62,45,58),(42,61,46,57),(43,60,47,64),(44,59,48,63)], [(1,26,19,48),(2,29,20,43),(3,32,21,46),(4,27,22,41),(5,30,23,44),(6,25,24,47),(7,28,17,42),(8,31,18,45),(9,33,53,57),(10,36,54,60),(11,39,55,63),(12,34,56,58),(13,37,49,61),(14,40,50,64),(15,35,51,59),(16,38,52,62)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,21),(18,24),(20,22),(25,45),(26,48),(27,43),(28,46),(29,41),(30,44),(31,47),(32,42),(33,61),(34,64),(35,59),(36,62),(37,57),(38,60),(39,63),(40,58),(49,53),(50,56),(52,54)]])

Matrix representation of Q169D4 in GL6(𝔽17)

1600000
0160000
001414413
003141313
0044314
0041333
,
1600000
0160000
000010
000001
0016000
0001600
,
0160000
100000
000107
0010100
0001001
007010
,
100000
0160000
001000
0001600
000010
0000016

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,14,3,4,4,0,0,14,14,4,13,0,0,4,13,3,3,0,0,13,13,14,3],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,7,0,0,1,0,10,0,0,0,0,10,0,1,0,0,7,0,1,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16] >;

Q169D4 in GAP, Magma, Sage, TeX

Q_{16}\rtimes_9D_4
% in TeX

G:=Group("Q16:9D4");
// GroupNames label

G:=SmallGroup(128,2002);
// by ID

G=gap.SmallGroup(128,2002);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,346,248,2804,1411,375,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^4=d^2=1,b^2=a^4,b*a*b^-1=a^-1,c*a*c^-1=d*a*d=a^3,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of Q169D4 in TeX

׿
×
𝔽