Copied to
clipboard

G = D20.30D4order 320 = 26·5

13rd non-split extension by D20 of D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D20.30D4, C20.13C24, C40.42C23, Q16.11D10, D20.8C23, Dic10.30D4, D40.13C22, Dic10.8C23, Dic20.15C22, C52(Q8○D8), (D5×Q16)⋊6C2, C4.77(D4×D5), Q8⋊D5.C22, (C10×Q16)⋊3C2, (C2×Q16)⋊12D5, C20.88(C2×D4), C5⋊D4.10D4, D407C24C2, Q8.D106C2, Q16⋊D55C2, D10.51(C2×D4), (C2×C8).105D10, C52C8.5C23, (C2×Q8).91D10, (C8×D5).7C22, (C4×D5).7C23, C8.14(C22×D5), C4.13(C23×D5), C22.22(D4×D5), D20.3C43C2, Q8.7(C22×D5), (C5×Q8).7C23, (Q8×D5).1C22, C20.C238C2, (C2×C40).35C22, Dic5.57(C2×D4), C8⋊D5.3C22, C40⋊C2.3C22, C5⋊Q16.1C22, (C2×C20).530C23, Q8.10D104C2, C4○D20.53C22, C10.114(C22×D4), Q82D5.1C22, (C5×Q16).11C22, (Q8×C10).152C22, C4.Dic5.48C22, C2.87(C2×D4×D5), (C2×C10).403(C2×D4), (C2×C4).231(C22×D5), SmallGroup(320,1438)

Series: Derived Chief Lower central Upper central

C1C20 — D20.30D4
C1C5C10C20C4×D5C4○D20Q8.10D10 — D20.30D4
C5C10C20 — D20.30D4
C1C2C2×C4C2×Q16

Generators and relations for D20.30D4
 G = < a,b,c,d | a20=b2=1, c4=d2=a10, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a10b, dcd-1=a10c3 >

Subgroups: 886 in 248 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, Q8, D5, C10, C10, C2×C8, C2×C8, M4(2), D8, SD16, Q16, Q16, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C8○D4, C2×Q16, C2×Q16, C4○D8, C8.C22, 2- 1+4, C52C8, C40, Dic10, Dic10, Dic10, C4×D5, C4×D5, D20, D20, D20, C5⋊D4, C5⋊D4, C2×C20, C2×C20, C5×Q8, C5×Q8, Q8○D8, C8×D5, C8⋊D5, C40⋊C2, D40, Dic20, C4.Dic5, Q8⋊D5, C5⋊Q16, C2×C40, C5×Q16, C4○D20, C4○D20, C4○D20, Q8×D5, Q8×D5, Q82D5, Q82D5, Q8×C10, D20.3C4, D407C2, D5×Q16, Q16⋊D5, Q8.D10, C20.C23, C10×Q16, Q8.10D10, D20.30D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, C22×D5, Q8○D8, D4×D5, C23×D5, C2×D4×D5, D20.30D4

Smallest permutation representation of D20.30D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 73)(2 72)(3 71)(4 70)(5 69)(6 68)(7 67)(8 66)(9 65)(10 64)(11 63)(12 62)(13 61)(14 80)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(21 123)(22 122)(23 121)(24 140)(25 139)(26 138)(27 137)(28 136)(29 135)(30 134)(31 133)(32 132)(33 131)(34 130)(35 129)(36 128)(37 127)(38 126)(39 125)(40 124)(41 104)(42 103)(43 102)(44 101)(45 120)(46 119)(47 118)(48 117)(49 116)(50 115)(51 114)(52 113)(53 112)(54 111)(55 110)(56 109)(57 108)(58 107)(59 106)(60 105)(81 149)(82 148)(83 147)(84 146)(85 145)(86 144)(87 143)(88 142)(89 141)(90 160)(91 159)(92 158)(93 157)(94 156)(95 155)(96 154)(97 153)(98 152)(99 151)(100 150)
(1 109 151 34 11 119 141 24)(2 110 152 35 12 120 142 25)(3 111 153 36 13 101 143 26)(4 112 154 37 14 102 144 27)(5 113 155 38 15 103 145 28)(6 114 156 39 16 104 146 29)(7 115 157 40 17 105 147 30)(8 116 158 21 18 106 148 31)(9 117 159 22 19 107 149 32)(10 118 160 23 20 108 150 33)(41 84 135 68 51 94 125 78)(42 85 136 69 52 95 126 79)(43 86 137 70 53 96 127 80)(44 87 138 71 54 97 128 61)(45 88 139 72 55 98 129 62)(46 89 140 73 56 99 130 63)(47 90 121 74 57 100 131 64)(48 91 122 75 58 81 132 65)(49 92 123 76 59 82 133 66)(50 93 124 77 60 83 134 67)
(1 95 11 85)(2 86 12 96)(3 97 13 87)(4 88 14 98)(5 99 15 89)(6 90 16 100)(7 81 17 91)(8 92 18 82)(9 83 19 93)(10 94 20 84)(21 133 31 123)(22 124 32 134)(23 135 33 125)(24 126 34 136)(25 137 35 127)(26 128 36 138)(27 139 37 129)(28 130 38 140)(29 121 39 131)(30 132 40 122)(41 118 51 108)(42 109 52 119)(43 120 53 110)(44 111 54 101)(45 102 55 112)(46 113 56 103)(47 104 57 114)(48 115 58 105)(49 106 59 116)(50 117 60 107)(61 153 71 143)(62 144 72 154)(63 155 73 145)(64 146 74 156)(65 157 75 147)(66 148 76 158)(67 159 77 149)(68 150 78 160)(69 141 79 151)(70 152 80 142)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,123)(22,122)(23,121)(24,140)(25,139)(26,138)(27,137)(28,136)(29,135)(30,134)(31,133)(32,132)(33,131)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,104)(42,103)(43,102)(44,101)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(81,149)(82,148)(83,147)(84,146)(85,145)(86,144)(87,143)(88,142)(89,141)(90,160)(91,159)(92,158)(93,157)(94,156)(95,155)(96,154)(97,153)(98,152)(99,151)(100,150), (1,109,151,34,11,119,141,24)(2,110,152,35,12,120,142,25)(3,111,153,36,13,101,143,26)(4,112,154,37,14,102,144,27)(5,113,155,38,15,103,145,28)(6,114,156,39,16,104,146,29)(7,115,157,40,17,105,147,30)(8,116,158,21,18,106,148,31)(9,117,159,22,19,107,149,32)(10,118,160,23,20,108,150,33)(41,84,135,68,51,94,125,78)(42,85,136,69,52,95,126,79)(43,86,137,70,53,96,127,80)(44,87,138,71,54,97,128,61)(45,88,139,72,55,98,129,62)(46,89,140,73,56,99,130,63)(47,90,121,74,57,100,131,64)(48,91,122,75,58,81,132,65)(49,92,123,76,59,82,133,66)(50,93,124,77,60,83,134,67), (1,95,11,85)(2,86,12,96)(3,97,13,87)(4,88,14,98)(5,99,15,89)(6,90,16,100)(7,81,17,91)(8,92,18,82)(9,83,19,93)(10,94,20,84)(21,133,31,123)(22,124,32,134)(23,135,33,125)(24,126,34,136)(25,137,35,127)(26,128,36,138)(27,139,37,129)(28,130,38,140)(29,121,39,131)(30,132,40,122)(41,118,51,108)(42,109,52,119)(43,120,53,110)(44,111,54,101)(45,102,55,112)(46,113,56,103)(47,104,57,114)(48,115,58,105)(49,106,59,116)(50,117,60,107)(61,153,71,143)(62,144,72,154)(63,155,73,145)(64,146,74,156)(65,157,75,147)(66,148,76,158)(67,159,77,149)(68,150,78,160)(69,141,79,151)(70,152,80,142)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,123)(22,122)(23,121)(24,140)(25,139)(26,138)(27,137)(28,136)(29,135)(30,134)(31,133)(32,132)(33,131)(34,130)(35,129)(36,128)(37,127)(38,126)(39,125)(40,124)(41,104)(42,103)(43,102)(44,101)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(81,149)(82,148)(83,147)(84,146)(85,145)(86,144)(87,143)(88,142)(89,141)(90,160)(91,159)(92,158)(93,157)(94,156)(95,155)(96,154)(97,153)(98,152)(99,151)(100,150), (1,109,151,34,11,119,141,24)(2,110,152,35,12,120,142,25)(3,111,153,36,13,101,143,26)(4,112,154,37,14,102,144,27)(5,113,155,38,15,103,145,28)(6,114,156,39,16,104,146,29)(7,115,157,40,17,105,147,30)(8,116,158,21,18,106,148,31)(9,117,159,22,19,107,149,32)(10,118,160,23,20,108,150,33)(41,84,135,68,51,94,125,78)(42,85,136,69,52,95,126,79)(43,86,137,70,53,96,127,80)(44,87,138,71,54,97,128,61)(45,88,139,72,55,98,129,62)(46,89,140,73,56,99,130,63)(47,90,121,74,57,100,131,64)(48,91,122,75,58,81,132,65)(49,92,123,76,59,82,133,66)(50,93,124,77,60,83,134,67), (1,95,11,85)(2,86,12,96)(3,97,13,87)(4,88,14,98)(5,99,15,89)(6,90,16,100)(7,81,17,91)(8,92,18,82)(9,83,19,93)(10,94,20,84)(21,133,31,123)(22,124,32,134)(23,135,33,125)(24,126,34,136)(25,137,35,127)(26,128,36,138)(27,139,37,129)(28,130,38,140)(29,121,39,131)(30,132,40,122)(41,118,51,108)(42,109,52,119)(43,120,53,110)(44,111,54,101)(45,102,55,112)(46,113,56,103)(47,104,57,114)(48,115,58,105)(49,106,59,116)(50,117,60,107)(61,153,71,143)(62,144,72,154)(63,155,73,145)(64,146,74,156)(65,157,75,147)(66,148,76,158)(67,159,77,149)(68,150,78,160)(69,141,79,151)(70,152,80,142) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,73),(2,72),(3,71),(4,70),(5,69),(6,68),(7,67),(8,66),(9,65),(10,64),(11,63),(12,62),(13,61),(14,80),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(21,123),(22,122),(23,121),(24,140),(25,139),(26,138),(27,137),(28,136),(29,135),(30,134),(31,133),(32,132),(33,131),(34,130),(35,129),(36,128),(37,127),(38,126),(39,125),(40,124),(41,104),(42,103),(43,102),(44,101),(45,120),(46,119),(47,118),(48,117),(49,116),(50,115),(51,114),(52,113),(53,112),(54,111),(55,110),(56,109),(57,108),(58,107),(59,106),(60,105),(81,149),(82,148),(83,147),(84,146),(85,145),(86,144),(87,143),(88,142),(89,141),(90,160),(91,159),(92,158),(93,157),(94,156),(95,155),(96,154),(97,153),(98,152),(99,151),(100,150)], [(1,109,151,34,11,119,141,24),(2,110,152,35,12,120,142,25),(3,111,153,36,13,101,143,26),(4,112,154,37,14,102,144,27),(5,113,155,38,15,103,145,28),(6,114,156,39,16,104,146,29),(7,115,157,40,17,105,147,30),(8,116,158,21,18,106,148,31),(9,117,159,22,19,107,149,32),(10,118,160,23,20,108,150,33),(41,84,135,68,51,94,125,78),(42,85,136,69,52,95,126,79),(43,86,137,70,53,96,127,80),(44,87,138,71,54,97,128,61),(45,88,139,72,55,98,129,62),(46,89,140,73,56,99,130,63),(47,90,121,74,57,100,131,64),(48,91,122,75,58,81,132,65),(49,92,123,76,59,82,133,66),(50,93,124,77,60,83,134,67)], [(1,95,11,85),(2,86,12,96),(3,97,13,87),(4,88,14,98),(5,99,15,89),(6,90,16,100),(7,81,17,91),(8,92,18,82),(9,83,19,93),(10,94,20,84),(21,133,31,123),(22,124,32,134),(23,135,33,125),(24,126,34,136),(25,137,35,127),(26,128,36,138),(27,139,37,129),(28,130,38,140),(29,121,39,131),(30,132,40,122),(41,118,51,108),(42,109,52,119),(43,120,53,110),(44,111,54,101),(45,102,55,112),(46,113,56,103),(47,104,57,114),(48,115,58,105),(49,106,59,116),(50,117,60,107),(61,153,71,143),(62,144,72,154),(63,155,73,145),(64,146,74,156),(65,157,75,147),(66,148,76,158),(67,159,77,149),(68,150,78,160),(69,141,79,151),(70,152,80,142)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D8E10A···10F20A20B20C20D20E···20L40A···40H
order12222224444444444558888810···102020202020···2040···40
size11210102020224444101020202222420202···244448···84···4

50 irreducible representations

dim11111111122222224444
type++++++++++++++++-++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10Q8○D8D4×D5D4×D5D20.30D4
kernelD20.30D4D20.3C4D407C2D5×Q16Q16⋊D5Q8.D10C20.C23C10×Q16Q8.10D10Dic10D20C5⋊D4C2×Q16C2×C8Q16C2×Q8C5C4C22C1
# reps11124221211222842228

Matrix representation of D20.30D4 in GL4(𝔽41) generated by

00623
001821
351800
232000
,
817015
2433150
026817
2602433
,
120290
012029
120120
012012
,
150178
0153324
178260
3324026
G:=sub<GL(4,GF(41))| [0,0,35,23,0,0,18,20,6,18,0,0,23,21,0,0],[8,24,0,26,17,33,26,0,0,15,8,24,15,0,17,33],[12,0,12,0,0,12,0,12,29,0,12,0,0,29,0,12],[15,0,17,33,0,15,8,24,17,33,26,0,8,24,0,26] >;

D20.30D4 in GAP, Magma, Sage, TeX

D_{20}._{30}D_4
% in TeX

G:=Group("D20.30D4");
// GroupNames label

G:=SmallGroup(320,1438);
// by ID

G=gap.SmallGroup(320,1438);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,184,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=1,c^4=d^2=a^10,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^10*b,d*c*d^-1=a^10*c^3>;
// generators/relations

׿
×
𝔽