Copied to
clipboard

G = Dic58SD16order 320 = 26·5

3rd semidirect product of Dic5 and SD16 acting through Inn(Dic5)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic58SD16, C88(C4×D5), C55(C4×SD16), C4023(C2×C4), C40⋊C29C4, C4.Q813D5, (C8×Dic5)⋊8C2, C10.79(C4×D4), C2.5(D5×SD16), C4⋊C4.158D10, D20.22(C2×C4), (C2×C8).255D10, C22.81(D4×D5), Dic1015(C2×C4), Dic53Q86C2, D208C4.4C2, D206C4.4C2, C10.51(C4○D8), C20.25(C4○D4), C10.Q1614C2, C20.99(C22×C4), C4.1(Q82D5), C10.34(C2×SD16), C2.9(D208C4), (C2×C40).156C22, (C2×C20).268C23, (C2×Dic5).273D4, (C2×D20).76C22, C2.5(SD163D5), (C2×Dic10).82C22, (C4×Dic5).259C22, C4.40(C2×C4×D5), (C5×C4.Q8)⋊6C2, (C2×C40⋊C2).9C2, (C2×C10).273(C2×D4), (C5×C4⋊C4).61C22, (C2×C4).371(C22×D5), (C2×C52C8).231C22, SmallGroup(320,479)

Series: Derived Chief Lower central Upper central

C1C20 — Dic58SD16
C1C5C10C20C2×C20C4×Dic5D208C4 — Dic58SD16
C5C10C20 — Dic58SD16
C1C22C2×C4C4.Q8

Generators and relations for Dic58SD16
 G = < a,b,c,d | a10=c8=d2=1, b2=a5, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c3 >

Subgroups: 502 in 122 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C52C8, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×SD16, C40⋊C2, C2×C52C8, C4×Dic5, C4×Dic5, C10.D4, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×D20, D206C4, C10.Q16, C8×Dic5, C5×C4.Q8, Dic53Q8, D208C4, C2×C40⋊C2, Dic58SD16
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, SD16, C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×SD16, C4○D8, C4×D5, C22×D5, C4×SD16, C2×C4×D5, D4×D5, Q82D5, D208C4, D5×SD16, SD163D5, Dic58SD16

Smallest permutation representation of Dic58SD16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 103 6 108)(2 102 7 107)(3 101 8 106)(4 110 9 105)(5 109 10 104)(11 57 16 52)(12 56 17 51)(13 55 18 60)(14 54 19 59)(15 53 20 58)(21 96 26 91)(22 95 27 100)(23 94 28 99)(24 93 29 98)(25 92 30 97)(31 112 36 117)(32 111 37 116)(33 120 38 115)(34 119 39 114)(35 118 40 113)(41 130 46 125)(42 129 47 124)(43 128 48 123)(44 127 49 122)(45 126 50 121)(61 156 66 151)(62 155 67 160)(63 154 68 159)(64 153 69 158)(65 152 70 157)(71 146 76 141)(72 145 77 150)(73 144 78 149)(74 143 79 148)(75 142 80 147)(81 136 86 131)(82 135 87 140)(83 134 88 139)(84 133 89 138)(85 132 90 137)
(1 148 34 14 28 134 48 154)(2 149 35 15 29 135 49 155)(3 150 36 16 30 136 50 156)(4 141 37 17 21 137 41 157)(5 142 38 18 22 138 42 158)(6 143 39 19 23 139 43 159)(7 144 40 20 24 140 44 160)(8 145 31 11 25 131 45 151)(9 146 32 12 26 132 46 152)(10 147 33 13 27 133 47 153)(51 96 85 130 65 110 71 116)(52 97 86 121 66 101 72 117)(53 98 87 122 67 102 73 118)(54 99 88 123 68 103 74 119)(55 100 89 124 69 104 75 120)(56 91 90 125 70 105 76 111)(57 92 81 126 61 106 77 112)(58 93 82 127 62 107 78 113)(59 94 83 128 63 108 79 114)(60 95 84 129 64 109 80 115)
(1 23)(2 22)(3 21)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 132)(12 131)(13 140)(14 139)(15 138)(16 137)(17 136)(18 135)(19 134)(20 133)(31 32)(33 40)(34 39)(35 38)(36 37)(41 50)(42 49)(43 48)(44 47)(45 46)(51 86)(52 85)(53 84)(54 83)(55 82)(56 81)(57 90)(58 89)(59 88)(60 87)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 80)(68 79)(69 78)(70 77)(91 106)(92 105)(93 104)(94 103)(95 102)(96 101)(97 110)(98 109)(99 108)(100 107)(111 112)(113 120)(114 119)(115 118)(116 117)(121 130)(122 129)(123 128)(124 127)(125 126)(141 156)(142 155)(143 154)(144 153)(145 152)(146 151)(147 160)(148 159)(149 158)(150 157)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,57,16,52)(12,56,17,51)(13,55,18,60)(14,54,19,59)(15,53,20,58)(21,96,26,91)(22,95,27,100)(23,94,28,99)(24,93,29,98)(25,92,30,97)(31,112,36,117)(32,111,37,116)(33,120,38,115)(34,119,39,114)(35,118,40,113)(41,130,46,125)(42,129,47,124)(43,128,48,123)(44,127,49,122)(45,126,50,121)(61,156,66,151)(62,155,67,160)(63,154,68,159)(64,153,69,158)(65,152,70,157)(71,146,76,141)(72,145,77,150)(73,144,78,149)(74,143,79,148)(75,142,80,147)(81,136,86,131)(82,135,87,140)(83,134,88,139)(84,133,89,138)(85,132,90,137), (1,148,34,14,28,134,48,154)(2,149,35,15,29,135,49,155)(3,150,36,16,30,136,50,156)(4,141,37,17,21,137,41,157)(5,142,38,18,22,138,42,158)(6,143,39,19,23,139,43,159)(7,144,40,20,24,140,44,160)(8,145,31,11,25,131,45,151)(9,146,32,12,26,132,46,152)(10,147,33,13,27,133,47,153)(51,96,85,130,65,110,71,116)(52,97,86,121,66,101,72,117)(53,98,87,122,67,102,73,118)(54,99,88,123,68,103,74,119)(55,100,89,124,69,104,75,120)(56,91,90,125,70,105,76,111)(57,92,81,126,61,106,77,112)(58,93,82,127,62,107,78,113)(59,94,83,128,63,108,79,114)(60,95,84,129,64,109,80,115), (1,23)(2,22)(3,21)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,132)(12,131)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(31,32)(33,40)(34,39)(35,38)(36,37)(41,50)(42,49)(43,48)(44,47)(45,46)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,90)(58,89)(59,88)(60,87)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,110)(98,109)(99,108)(100,107)(111,112)(113,120)(114,119)(115,118)(116,117)(121,130)(122,129)(123,128)(124,127)(125,126)(141,156)(142,155)(143,154)(144,153)(145,152)(146,151)(147,160)(148,159)(149,158)(150,157)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,103,6,108)(2,102,7,107)(3,101,8,106)(4,110,9,105)(5,109,10,104)(11,57,16,52)(12,56,17,51)(13,55,18,60)(14,54,19,59)(15,53,20,58)(21,96,26,91)(22,95,27,100)(23,94,28,99)(24,93,29,98)(25,92,30,97)(31,112,36,117)(32,111,37,116)(33,120,38,115)(34,119,39,114)(35,118,40,113)(41,130,46,125)(42,129,47,124)(43,128,48,123)(44,127,49,122)(45,126,50,121)(61,156,66,151)(62,155,67,160)(63,154,68,159)(64,153,69,158)(65,152,70,157)(71,146,76,141)(72,145,77,150)(73,144,78,149)(74,143,79,148)(75,142,80,147)(81,136,86,131)(82,135,87,140)(83,134,88,139)(84,133,89,138)(85,132,90,137), (1,148,34,14,28,134,48,154)(2,149,35,15,29,135,49,155)(3,150,36,16,30,136,50,156)(4,141,37,17,21,137,41,157)(5,142,38,18,22,138,42,158)(6,143,39,19,23,139,43,159)(7,144,40,20,24,140,44,160)(8,145,31,11,25,131,45,151)(9,146,32,12,26,132,46,152)(10,147,33,13,27,133,47,153)(51,96,85,130,65,110,71,116)(52,97,86,121,66,101,72,117)(53,98,87,122,67,102,73,118)(54,99,88,123,68,103,74,119)(55,100,89,124,69,104,75,120)(56,91,90,125,70,105,76,111)(57,92,81,126,61,106,77,112)(58,93,82,127,62,107,78,113)(59,94,83,128,63,108,79,114)(60,95,84,129,64,109,80,115), (1,23)(2,22)(3,21)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,132)(12,131)(13,140)(14,139)(15,138)(16,137)(17,136)(18,135)(19,134)(20,133)(31,32)(33,40)(34,39)(35,38)(36,37)(41,50)(42,49)(43,48)(44,47)(45,46)(51,86)(52,85)(53,84)(54,83)(55,82)(56,81)(57,90)(58,89)(59,88)(60,87)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77)(91,106)(92,105)(93,104)(94,103)(95,102)(96,101)(97,110)(98,109)(99,108)(100,107)(111,112)(113,120)(114,119)(115,118)(116,117)(121,130)(122,129)(123,128)(124,127)(125,126)(141,156)(142,155)(143,154)(144,153)(145,152)(146,151)(147,160)(148,159)(149,158)(150,157) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,103,6,108),(2,102,7,107),(3,101,8,106),(4,110,9,105),(5,109,10,104),(11,57,16,52),(12,56,17,51),(13,55,18,60),(14,54,19,59),(15,53,20,58),(21,96,26,91),(22,95,27,100),(23,94,28,99),(24,93,29,98),(25,92,30,97),(31,112,36,117),(32,111,37,116),(33,120,38,115),(34,119,39,114),(35,118,40,113),(41,130,46,125),(42,129,47,124),(43,128,48,123),(44,127,49,122),(45,126,50,121),(61,156,66,151),(62,155,67,160),(63,154,68,159),(64,153,69,158),(65,152,70,157),(71,146,76,141),(72,145,77,150),(73,144,78,149),(74,143,79,148),(75,142,80,147),(81,136,86,131),(82,135,87,140),(83,134,88,139),(84,133,89,138),(85,132,90,137)], [(1,148,34,14,28,134,48,154),(2,149,35,15,29,135,49,155),(3,150,36,16,30,136,50,156),(4,141,37,17,21,137,41,157),(5,142,38,18,22,138,42,158),(6,143,39,19,23,139,43,159),(7,144,40,20,24,140,44,160),(8,145,31,11,25,131,45,151),(9,146,32,12,26,132,46,152),(10,147,33,13,27,133,47,153),(51,96,85,130,65,110,71,116),(52,97,86,121,66,101,72,117),(53,98,87,122,67,102,73,118),(54,99,88,123,68,103,74,119),(55,100,89,124,69,104,75,120),(56,91,90,125,70,105,76,111),(57,92,81,126,61,106,77,112),(58,93,82,127,62,107,78,113),(59,94,83,128,63,108,79,114),(60,95,84,129,64,109,80,115)], [(1,23),(2,22),(3,21),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,132),(12,131),(13,140),(14,139),(15,138),(16,137),(17,136),(18,135),(19,134),(20,133),(31,32),(33,40),(34,39),(35,38),(36,37),(41,50),(42,49),(43,48),(44,47),(45,46),(51,86),(52,85),(53,84),(54,83),(55,82),(56,81),(57,90),(58,89),(59,88),(60,87),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,80),(68,79),(69,78),(70,77),(91,106),(92,105),(93,104),(94,103),(95,102),(96,101),(97,110),(98,109),(99,108),(100,107),(111,112),(113,120),(114,119),(115,118),(116,117),(121,130),(122,129),(123,128),(124,127),(125,126),(141,156),(142,155),(143,154),(144,153),(145,152),(146,151),(147,160),(148,159),(149,158),(150,157)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M4N5A5B8A8B8C8D8E8F8G8H10A···10F20A20B20C20D20E···20L40A···40H
order12222244444444444444558888888810···102020202020···2040···40
size11112020224444555510102020222222101010102···244448···84···4

56 irreducible representations

dim111111111222222224444
type++++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D5SD16C4○D4D10D10C4○D8C4×D5Q82D5D4×D5D5×SD16SD163D5
kernelDic58SD16D206C4C10.Q16C8×Dic5C5×C4.Q8Dic53Q8D208C4C2×C40⋊C2C40⋊C2C2×Dic5C4.Q8Dic5C20C4⋊C4C2×C8C10C8C4C22C2C2
# reps111111118224242482244

Matrix representation of Dic58SD16 in GL5(𝔽41)

400000
00100
0403400
000400
000040
,
90000
01000
0344000
00090
00009
,
400000
040000
004000
0001515
0002615
,
10000
01000
0344000
00010
000040

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,40],[9,0,0,0,0,0,1,34,0,0,0,0,40,0,0,0,0,0,9,0,0,0,0,0,9],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,15,26,0,0,0,15,15],[1,0,0,0,0,0,1,34,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,40] >;

Dic58SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_5\rtimes_8{\rm SD}_{16}
% in TeX

G:=Group("Dic5:8SD16");
// GroupNames label

G:=SmallGroup(320,479);
// by ID

G=gap.SmallGroup(320,479);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,120,135,268,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^8=d^2=1,b^2=a^5,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽