Copied to
clipboard

?

G = C2×C8⋊D6order 192 = 26·3

Direct product of C2 and C8⋊D6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8⋊D6, C242C23, D125C23, D249C22, M4(2)⋊17D6, C12.58C24, Dic65C23, C23.57D12, (C2×C8)⋊4D6, C82(C22×S3), (C2×D24)⋊14C2, C61(C8⋊C22), (C2×C24)⋊7C22, (C2×C4).57D12, C4.48(C2×D12), C24⋊C28C22, C12.238(C2×D4), (C2×C12).203D4, (C2×M4(2))⋊3S3, (C6×M4(2))⋊3C2, C4.55(S3×C23), C6.25(C22×D4), C4○D1218C22, (C22×D12)⋊17C2, (C2×D12)⋊49C22, (C22×C6).118D4, C22.73(C2×D12), (C22×C4).281D6, C2.27(C22×D12), (C2×C12).511C23, (C2×Dic6)⋊57C22, (C3×M4(2))⋊19C22, (C22×C12).266C22, C31(C2×C8⋊C22), (C2×C24⋊C2)⋊4C2, (C2×C6).62(C2×D4), (C2×C4○D12)⋊26C2, (C2×C4).223(C22×S3), SmallGroup(192,1305)

Series: Derived Chief Lower central Upper central

C1C12 — C2×C8⋊D6
C1C3C6C12D12C2×D12C22×D12 — C2×C8⋊D6
C3C6C12 — C2×C8⋊D6

Subgroups: 984 in 298 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×2], C4 [×2], C4 [×2], C22, C22 [×2], C22 [×22], S3 [×6], C6, C6 [×2], C6 [×2], C8 [×4], C2×C4 [×2], C2×C4 [×4], C2×C4 [×5], D4 [×17], Q8 [×3], C23, C23 [×11], Dic3 [×2], C12 [×2], C12 [×2], D6 [×20], C2×C6, C2×C6 [×2], C2×C6 [×2], C2×C8 [×2], M4(2) [×4], D8 [×8], SD16 [×8], C22×C4, C22×C4, C2×D4 [×11], C2×Q8, C4○D4 [×6], C24, C24 [×4], Dic6 [×2], Dic6, C4×S3 [×4], D12 [×6], D12 [×7], C2×Dic3, C3⋊D4 [×4], C2×C12 [×2], C2×C12 [×4], C22×S3 [×11], C22×C6, C2×M4(2), C2×D8 [×2], C2×SD16 [×2], C8⋊C22 [×8], C22×D4, C2×C4○D4, C24⋊C2 [×8], D24 [×8], C2×C24 [×2], C3×M4(2) [×4], C2×Dic6, S3×C2×C4, C2×D12, C2×D12 [×6], C2×D12 [×3], C4○D12 [×4], C4○D12 [×2], C2×C3⋊D4, C22×C12, S3×C23, C2×C8⋊C22, C2×C24⋊C2 [×2], C2×D24 [×2], C8⋊D6 [×8], C6×M4(2), C22×D12, C2×C4○D12, C2×C8⋊D6

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, D12 [×4], C22×S3 [×7], C8⋊C22 [×2], C22×D4, C2×D12 [×6], S3×C23, C2×C8⋊C22, C8⋊D6 [×2], C22×D12, C2×C8⋊D6

Generators and relations
 G = < a,b,c,d | a2=b8=c6=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 39)(18 40)(19 33)(20 34)(21 35)(22 36)(23 37)(24 38)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 25 15 35 42)(2 18 26 12 36 47)(3 23 27 9 37 44)(4 20 28 14 38 41)(5 17 29 11 39 46)(6 22 30 16 40 43)(7 19 31 13 33 48)(8 24 32 10 34 45)
(1 42)(2 41)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 32)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 40)

G:=sub<Sym(48)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40)>;

G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,39)(18,40)(19,33)(20,34)(21,35)(22,36)(23,37)(24,38)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,25,15,35,42)(2,18,26,12,36,47)(3,23,27,9,37,44)(4,20,28,14,38,41)(5,17,29,11,39,46)(6,22,30,16,40,43)(7,19,31,13,33,48)(8,24,32,10,34,45), (1,42)(2,41)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,32)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,40) );

G=PermutationGroup([(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,39),(18,40),(19,33),(20,34),(21,35),(22,36),(23,37),(24,38),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,25,15,35,42),(2,18,26,12,36,47),(3,23,27,9,37,44),(4,20,28,14,38,41),(5,17,29,11,39,46),(6,22,30,16,40,43),(7,19,31,13,33,48),(8,24,32,10,34,45)], [(1,42),(2,41),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,32),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,40)])

Matrix representation G ⊆ GL6(𝔽73)

7200000
0720000
001000
000100
000010
000001
,
7200000
0720000
000010
000001
00661400
0059700
,
010000
72720000
0072100
0072000
0000172
000010
,
0720000
7200000
001000
0017200
0000759
00006666

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0],[0,72,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,7,66,0,0,0,0,59,66] >;

42 conjugacy classes

class 1 2A2B2C2D2E2F···2K 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order1222222···2344444466666888812121212121224···24
size11112212···122222212122224444442222444···4

42 irreducible representations

dim11111112222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D6D6D6D12D12C8⋊C22C8⋊D6
kernelC2×C8⋊D6C2×C24⋊C2C2×D24C8⋊D6C6×M4(2)C22×D12C2×C4○D12C2×M4(2)C2×C12C22×C6C2×C8M4(2)C22×C4C2×C4C23C6C2
# reps12281111312416224

In GAP, Magma, Sage, TeX

C_2\times C_8\rtimes D_6
% in TeX

G:=Group("C2xC8:D6");
// GroupNames label

G:=SmallGroup(192,1305);
// by ID

G=gap.SmallGroup(192,1305);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,675,297,80,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^6=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽