Copied to
clipboard

G = C2×D4.D7order 224 = 25·7

Direct product of C2 and D4.D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.D7, D4.7D14, C142SD16, C28.16D4, C28.13C23, Dic146C22, C7⋊C88C22, C73(C2×SD16), (C2×D4).4D7, (D4×C14).3C2, (C2×C4).48D14, C14.46(C2×D4), (C2×C14).40D4, C4.6(C7⋊D4), (C2×Dic14)⋊9C2, (C7×D4).7C22, C4.13(C22×D7), (C2×C28).31C22, C22.22(C7⋊D4), (C2×C7⋊C8)⋊5C2, C2.10(C2×C7⋊D4), SmallGroup(224,128)

Series: Derived Chief Lower central Upper central

C1C28 — C2×D4.D7
C1C7C14C28Dic14C2×Dic14 — C2×D4.D7
C7C14C28 — C2×D4.D7
C1C22C2×C4C2×D4

Generators and relations for C2×D4.D7
 G = < a,b,c,d,e | a2=b4=c2=d7=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >

Subgroups: 222 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C14, C14, C14, C2×C8, SD16, C2×D4, C2×Q8, Dic7, C28, C2×C14, C2×C14, C2×SD16, C7⋊C8, Dic14, Dic14, C2×Dic7, C2×C28, C7×D4, C7×D4, C22×C14, C2×C7⋊C8, D4.D7, C2×Dic14, D4×C14, C2×D4.D7
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C2×SD16, C7⋊D4, C22×D7, D4.D7, C2×C7⋊D4, C2×D4.D7

Smallest permutation representation of C2×D4.D7
On 112 points
Generators in S112
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 71 64 78)(58 72 65 79)(59 73 66 80)(60 74 67 81)(61 75 68 82)(62 76 69 83)(63 77 70 84)(85 106 92 99)(86 107 93 100)(87 108 94 101)(88 109 95 102)(89 110 96 103)(90 111 97 104)(91 112 98 105)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)(36 43)(37 44)(38 45)(39 46)(40 47)(41 48)(42 49)(57 64)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)(91 98)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 96 8 89)(2 95 9 88)(3 94 10 87)(4 93 11 86)(5 92 12 85)(6 98 13 91)(7 97 14 90)(15 103 22 110)(16 102 23 109)(17 101 24 108)(18 100 25 107)(19 99 26 106)(20 105 27 112)(21 104 28 111)(29 68 36 61)(30 67 37 60)(31 66 38 59)(32 65 39 58)(33 64 40 57)(34 70 41 63)(35 69 42 62)(43 75 50 82)(44 74 51 81)(45 73 52 80)(46 72 53 79)(47 71 54 78)(48 77 55 84)(49 76 56 83)

G:=sub<Sym(112)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,96,8,89)(2,95,9,88)(3,94,10,87)(4,93,11,86)(5,92,12,85)(6,98,13,91)(7,97,14,90)(15,103,22,110)(16,102,23,109)(17,101,24,108)(18,100,25,107)(19,99,26,106)(20,105,27,112)(21,104,28,111)(29,68,36,61)(30,67,37,60)(31,66,38,59)(32,65,39,58)(33,64,40,57)(34,70,41,63)(35,69,42,62)(43,75,50,82)(44,74,51,81)(45,73,52,80)(46,72,53,79)(47,71,54,78)(48,77,55,84)(49,76,56,83)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,71,64,78)(58,72,65,79)(59,73,66,80)(60,74,67,81)(61,75,68,82)(62,76,69,83)(63,77,70,84)(85,106,92,99)(86,107,93,100)(87,108,94,101)(88,109,95,102)(89,110,96,103)(90,111,97,104)(91,112,98,105), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56)(36,43)(37,44)(38,45)(39,46)(40,47)(41,48)(42,49)(57,64)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97)(91,98), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,96,8,89)(2,95,9,88)(3,94,10,87)(4,93,11,86)(5,92,12,85)(6,98,13,91)(7,97,14,90)(15,103,22,110)(16,102,23,109)(17,101,24,108)(18,100,25,107)(19,99,26,106)(20,105,27,112)(21,104,28,111)(29,68,36,61)(30,67,37,60)(31,66,38,59)(32,65,39,58)(33,64,40,57)(34,70,41,63)(35,69,42,62)(43,75,50,82)(44,74,51,81)(45,73,52,80)(46,72,53,79)(47,71,54,78)(48,77,55,84)(49,76,56,83) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,71,64,78),(58,72,65,79),(59,73,66,80),(60,74,67,81),(61,75,68,82),(62,76,69,83),(63,77,70,84),(85,106,92,99),(86,107,93,100),(87,108,94,101),(88,109,95,102),(89,110,96,103),(90,111,97,104),(91,112,98,105)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56),(36,43),(37,44),(38,45),(39,46),(40,47),(41,48),(42,49),(57,64),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97),(91,98)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,96,8,89),(2,95,9,88),(3,94,10,87),(4,93,11,86),(5,92,12,85),(6,98,13,91),(7,97,14,90),(15,103,22,110),(16,102,23,109),(17,101,24,108),(18,100,25,107),(19,99,26,106),(20,105,27,112),(21,104,28,111),(29,68,36,61),(30,67,37,60),(31,66,38,59),(32,65,39,58),(33,64,40,57),(34,70,41,63),(35,69,42,62),(43,75,50,82),(44,74,51,81),(45,73,52,80),(46,72,53,79),(47,71,54,78),(48,77,55,84),(49,76,56,83)]])

C2×D4.D7 is a maximal subgroup of
D28.2D4  D4.D7⋊C4  Dic76SD16  Dic142D4  Dic14.D4  D4.6D28  D14⋊SD16  C7⋊C81D4  D4.D28  D4.1D28  C42.51D14  D4.2D28  D2817D4  Dic1417D4  C7⋊C823D4  C7⋊C85D4  C42.61D14  C42.214D14  C42.65D14  C42.74D14  Dic149D4  C284SD16  (C2×D8).D7  C5611D4  C56.22D4  Dic14⋊D4  Dic73SD16  C56.31D4  Dic147D4  C5615D4  M4(2).13D14  (C7×D4).31D4  (C7×D4).32D4  C2×D7×SD16  D86D14  D28.33C23
C2×D4.D7 is a maximal quotient of
C4⋊C4.231D14  C28.38SD16  D4.2D28  C4⋊D4.D7  Dic1417D4  C7⋊C823D4  C28.16D8  Dic149D4  C284SD16  C28.SD16  C28.11Q16  Dic146Q8  (C7×D4).31D4

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C8A8B8C8D14A···14I14J···14U28A···28F
order1222224444777888814···1414···1428···28
size111144222828222141414142···24···44···4

44 irreducible representations

dim11111222222224
type++++++++++-
imageC1C2C2C2C2D4D4D7SD16D14D14C7⋊D4C7⋊D4D4.D7
kernelC2×D4.D7C2×C7⋊C8D4.D7C2×Dic14D4×C14C28C2×C14C2×D4C14C2×C4D4C4C22C2
# reps11411113436666

Matrix representation of C2×D4.D7 in GL4(𝔽113) generated by

112000
011200
0010
0001
,
112000
011200
0001
001120
,
112000
10100
0001
0010
,
106000
21600
0010
0001
,
668100
694700
0010013
001313
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,1,0,0,0,0,1],[112,0,0,0,0,112,0,0,0,0,0,112,0,0,1,0],[112,10,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[106,2,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[66,69,0,0,81,47,0,0,0,0,100,13,0,0,13,13] >;

C2×D4.D7 in GAP, Magma, Sage, TeX

C_2\times D_4.D_7
% in TeX

G:=Group("C2xD4.D7");
// GroupNames label

G:=SmallGroup(224,128);
// by ID

G=gap.SmallGroup(224,128);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,218,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^7=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽