Copied to
clipboard

?

G = (C2×C20)⋊17D4order 320 = 26·5

13rd semidirect product of C2×C20 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C20)⋊17D4, C20⋊D433C2, C20.454(C2×D4), Dic54(C4○D4), (C2×D4).237D10, (C2×Q8).194D10, Dic5⋊D447C2, Dic5⋊Q834C2, C20.17D433C2, C20.23D434C2, (C2×C20).889C23, (C2×C10).318C24, (C22×C4).288D10, C10.168(C22×D4), (D4×C10).277C22, (C2×D20).290C22, C57(C22.26C24), (Q8×C10).244C22, C22.327(C23×D5), C23.139(C22×D5), (C22×C10).244C23, (C22×C20).297C22, (C4×Dic5).292C22, (C2×Dic5).304C23, (C22×D5).139C23, C23.D5.137C22, D10⋊C4.160C22, (C2×Dic10).319C22, C10.D4.172C22, (C22×Dic5).260C22, (C2×C4○D4)⋊10D5, (C4×C5⋊D4)⋊61C2, (C2×C4×Dic5)⋊15C2, (C2×C4○D20)⋊32C2, (C10×C4○D4)⋊10C2, (C2×C4)⋊11(C5⋊D4), C2.106(D5×C4○D4), (C2×C10).83(C2×D4), C4.146(C2×C5⋊D4), C22.1(C2×C5⋊D4), C10.218(C2×C4○D4), (C2×C4×D5).272C22, C2.41(C22×C5⋊D4), (C2×C4).832(C22×D5), (C2×C5⋊D4).150C22, SmallGroup(320,1504)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×C20)⋊17D4
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — (C2×C20)⋊17D4
C5C2×C10 — (C2×C20)⋊17D4

Subgroups: 1022 in 310 conjugacy classes, 115 normal (31 characteristic)
C1, C2, C2 [×2], C2 [×6], C4 [×4], C4 [×10], C22, C22 [×2], C22 [×14], C5, C2×C4 [×2], C2×C4 [×6], C2×C4 [×18], D4 [×20], Q8 [×4], C23, C23 [×2], C23 [×2], D5 [×2], C10, C10 [×2], C10 [×4], C42 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4, C22×C4 [×2], C22×C4 [×4], C2×D4, C2×D4 [×2], C2×D4 [×7], C2×Q8, C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×4], C20 [×4], C20 [×2], D10 [×6], C2×C10, C2×C10 [×2], C2×C10 [×8], C2×C42, C4×D4 [×4], C4⋊D4 [×4], C4.4D4 [×2], C41D4, C4⋊Q8, C2×C4○D4, C2×C4○D4, Dic10 [×2], C4×D5 [×4], D20 [×2], C2×Dic5 [×6], C2×Dic5 [×4], C5⋊D4 [×12], C2×C20 [×2], C2×C20 [×6], C2×C20 [×4], C5×D4 [×6], C5×Q8 [×2], C22×D5 [×2], C22×C10, C22×C10 [×2], C22.26C24, C4×Dic5 [×2], C4×Dic5 [×2], C10.D4 [×4], D10⋊C4 [×4], C23.D5 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, C4○D20 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×6], C22×C20, C22×C20 [×2], D4×C10, D4×C10 [×2], Q8×C10, C5×C4○D4 [×4], C2×C4×Dic5, C4×C5⋊D4 [×4], C20.17D4, Dic5⋊D4 [×4], C20⋊D4, Dic5⋊Q8, C20.23D4, C2×C4○D20, C10×C4○D4, (C2×C20)⋊17D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×4], C24, D10 [×7], C22×D4, C2×C4○D4 [×2], C5⋊D4 [×4], C22×D5 [×7], C22.26C24, C2×C5⋊D4 [×6], C23×D5, D5×C4○D4 [×2], C22×C5⋊D4, (C2×C20)⋊17D4

Generators and relations
 G = < a,b,c,d | a2=b20=c4=d2=1, ab=ba, ac=ca, dad=ab10, cbc-1=dbd=b9, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 101)(2 102)(3 103)(4 104)(5 105)(6 106)(7 107)(8 108)(9 109)(10 110)(11 111)(12 112)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 119)(20 120)(21 50)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)(30 59)(31 60)(32 41)(33 42)(34 43)(35 44)(36 45)(37 46)(38 47)(39 48)(40 49)(61 139)(62 140)(63 121)(64 122)(65 123)(66 124)(67 125)(68 126)(69 127)(70 128)(71 129)(72 130)(73 131)(74 132)(75 133)(76 134)(77 135)(78 136)(79 137)(80 138)(81 160)(82 141)(83 142)(84 143)(85 144)(86 145)(87 146)(88 147)(89 148)(90 149)(91 150)(92 151)(93 152)(94 153)(95 154)(96 155)(97 156)(98 157)(99 158)(100 159)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 24 69 93)(2 33 70 82)(3 22 71 91)(4 31 72 100)(5 40 73 89)(6 29 74 98)(7 38 75 87)(8 27 76 96)(9 36 77 85)(10 25 78 94)(11 34 79 83)(12 23 80 92)(13 32 61 81)(14 21 62 90)(15 30 63 99)(16 39 64 88)(17 28 65 97)(18 37 66 86)(19 26 67 95)(20 35 68 84)(41 139 160 113)(42 128 141 102)(43 137 142 111)(44 126 143 120)(45 135 144 109)(46 124 145 118)(47 133 146 107)(48 122 147 116)(49 131 148 105)(50 140 149 114)(51 129 150 103)(52 138 151 112)(53 127 152 101)(54 136 153 110)(55 125 154 119)(56 134 155 108)(57 123 156 117)(58 132 157 106)(59 121 158 115)(60 130 159 104)
(2 10)(3 19)(4 8)(5 17)(7 15)(9 13)(12 20)(14 18)(21 86)(22 95)(23 84)(24 93)(25 82)(26 91)(27 100)(28 89)(29 98)(30 87)(31 96)(32 85)(33 94)(34 83)(35 92)(36 81)(37 90)(38 99)(39 88)(40 97)(41 154)(42 143)(43 152)(44 141)(45 150)(46 159)(47 148)(48 157)(49 146)(50 155)(51 144)(52 153)(53 142)(54 151)(55 160)(56 149)(57 158)(58 147)(59 156)(60 145)(61 77)(62 66)(63 75)(65 73)(67 71)(68 80)(70 78)(72 76)(101 111)(102 120)(103 109)(104 118)(105 107)(106 116)(108 114)(110 112)(113 119)(115 117)(121 123)(122 132)(124 130)(125 139)(126 128)(127 137)(129 135)(131 133)(134 140)(136 138)

G:=sub<Sym(160)| (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(61,139)(62,140)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130)(73,131)(74,132)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,160)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,24,69,93)(2,33,70,82)(3,22,71,91)(4,31,72,100)(5,40,73,89)(6,29,74,98)(7,38,75,87)(8,27,76,96)(9,36,77,85)(10,25,78,94)(11,34,79,83)(12,23,80,92)(13,32,61,81)(14,21,62,90)(15,30,63,99)(16,39,64,88)(17,28,65,97)(18,37,66,86)(19,26,67,95)(20,35,68,84)(41,139,160,113)(42,128,141,102)(43,137,142,111)(44,126,143,120)(45,135,144,109)(46,124,145,118)(47,133,146,107)(48,122,147,116)(49,131,148,105)(50,140,149,114)(51,129,150,103)(52,138,151,112)(53,127,152,101)(54,136,153,110)(55,125,154,119)(56,134,155,108)(57,123,156,117)(58,132,157,106)(59,121,158,115)(60,130,159,104), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,86)(22,95)(23,84)(24,93)(25,82)(26,91)(27,100)(28,89)(29,98)(30,87)(31,96)(32,85)(33,94)(34,83)(35,92)(36,81)(37,90)(38,99)(39,88)(40,97)(41,154)(42,143)(43,152)(44,141)(45,150)(46,159)(47,148)(48,157)(49,146)(50,155)(51,144)(52,153)(53,142)(54,151)(55,160)(56,149)(57,158)(58,147)(59,156)(60,145)(61,77)(62,66)(63,75)(65,73)(67,71)(68,80)(70,78)(72,76)(101,111)(102,120)(103,109)(104,118)(105,107)(106,116)(108,114)(110,112)(113,119)(115,117)(121,123)(122,132)(124,130)(125,139)(126,128)(127,137)(129,135)(131,133)(134,140)(136,138)>;

G:=Group( (1,101)(2,102)(3,103)(4,104)(5,105)(6,106)(7,107)(8,108)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,119)(20,120)(21,50)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,41)(33,42)(34,43)(35,44)(36,45)(37,46)(38,47)(39,48)(40,49)(61,139)(62,140)(63,121)(64,122)(65,123)(66,124)(67,125)(68,126)(69,127)(70,128)(71,129)(72,130)(73,131)(74,132)(75,133)(76,134)(77,135)(78,136)(79,137)(80,138)(81,160)(82,141)(83,142)(84,143)(85,144)(86,145)(87,146)(88,147)(89,148)(90,149)(91,150)(92,151)(93,152)(94,153)(95,154)(96,155)(97,156)(98,157)(99,158)(100,159), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,24,69,93)(2,33,70,82)(3,22,71,91)(4,31,72,100)(5,40,73,89)(6,29,74,98)(7,38,75,87)(8,27,76,96)(9,36,77,85)(10,25,78,94)(11,34,79,83)(12,23,80,92)(13,32,61,81)(14,21,62,90)(15,30,63,99)(16,39,64,88)(17,28,65,97)(18,37,66,86)(19,26,67,95)(20,35,68,84)(41,139,160,113)(42,128,141,102)(43,137,142,111)(44,126,143,120)(45,135,144,109)(46,124,145,118)(47,133,146,107)(48,122,147,116)(49,131,148,105)(50,140,149,114)(51,129,150,103)(52,138,151,112)(53,127,152,101)(54,136,153,110)(55,125,154,119)(56,134,155,108)(57,123,156,117)(58,132,157,106)(59,121,158,115)(60,130,159,104), (2,10)(3,19)(4,8)(5,17)(7,15)(9,13)(12,20)(14,18)(21,86)(22,95)(23,84)(24,93)(25,82)(26,91)(27,100)(28,89)(29,98)(30,87)(31,96)(32,85)(33,94)(34,83)(35,92)(36,81)(37,90)(38,99)(39,88)(40,97)(41,154)(42,143)(43,152)(44,141)(45,150)(46,159)(47,148)(48,157)(49,146)(50,155)(51,144)(52,153)(53,142)(54,151)(55,160)(56,149)(57,158)(58,147)(59,156)(60,145)(61,77)(62,66)(63,75)(65,73)(67,71)(68,80)(70,78)(72,76)(101,111)(102,120)(103,109)(104,118)(105,107)(106,116)(108,114)(110,112)(113,119)(115,117)(121,123)(122,132)(124,130)(125,139)(126,128)(127,137)(129,135)(131,133)(134,140)(136,138) );

G=PermutationGroup([(1,101),(2,102),(3,103),(4,104),(5,105),(6,106),(7,107),(8,108),(9,109),(10,110),(11,111),(12,112),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,119),(20,120),(21,50),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58),(30,59),(31,60),(32,41),(33,42),(34,43),(35,44),(36,45),(37,46),(38,47),(39,48),(40,49),(61,139),(62,140),(63,121),(64,122),(65,123),(66,124),(67,125),(68,126),(69,127),(70,128),(71,129),(72,130),(73,131),(74,132),(75,133),(76,134),(77,135),(78,136),(79,137),(80,138),(81,160),(82,141),(83,142),(84,143),(85,144),(86,145),(87,146),(88,147),(89,148),(90,149),(91,150),(92,151),(93,152),(94,153),(95,154),(96,155),(97,156),(98,157),(99,158),(100,159)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,24,69,93),(2,33,70,82),(3,22,71,91),(4,31,72,100),(5,40,73,89),(6,29,74,98),(7,38,75,87),(8,27,76,96),(9,36,77,85),(10,25,78,94),(11,34,79,83),(12,23,80,92),(13,32,61,81),(14,21,62,90),(15,30,63,99),(16,39,64,88),(17,28,65,97),(18,37,66,86),(19,26,67,95),(20,35,68,84),(41,139,160,113),(42,128,141,102),(43,137,142,111),(44,126,143,120),(45,135,144,109),(46,124,145,118),(47,133,146,107),(48,122,147,116),(49,131,148,105),(50,140,149,114),(51,129,150,103),(52,138,151,112),(53,127,152,101),(54,136,153,110),(55,125,154,119),(56,134,155,108),(57,123,156,117),(58,132,157,106),(59,121,158,115),(60,130,159,104)], [(2,10),(3,19),(4,8),(5,17),(7,15),(9,13),(12,20),(14,18),(21,86),(22,95),(23,84),(24,93),(25,82),(26,91),(27,100),(28,89),(29,98),(30,87),(31,96),(32,85),(33,94),(34,83),(35,92),(36,81),(37,90),(38,99),(39,88),(40,97),(41,154),(42,143),(43,152),(44,141),(45,150),(46,159),(47,148),(48,157),(49,146),(50,155),(51,144),(52,153),(53,142),(54,151),(55,160),(56,149),(57,158),(58,147),(59,156),(60,145),(61,77),(62,66),(63,75),(65,73),(67,71),(68,80),(70,78),(72,76),(101,111),(102,120),(103,109),(104,118),(105,107),(106,116),(108,114),(110,112),(113,119),(115,117),(121,123),(122,132),(124,130),(125,139),(126,128),(127,137),(129,135),(131,133),(134,140),(136,138)])

Matrix representation G ⊆ GL6(𝔽41)

100000
010000
009200
0013200
000010
000001
,
610000
510000
0032000
0003200
0000400
0000040
,
610000
6350000
001000
000100
0000040
000010
,
610000
6350000
001000
00324000
000010
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,1,0,0,0,0,2,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,5,0,0,0,0,1,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[6,6,0,0,0,0,1,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[6,6,0,0,0,0,1,35,0,0,0,0,0,0,1,32,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40] >;

68 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I···4P4Q4R5A5B10A···10F10G···10R20A···20H20I···20T
order1222222222444444444···4445510···1010···1020···2020···20
size1111224420201111224410···102020222···24···42···24···4

68 irreducible representations

dim111111111122222224
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10C5⋊D4D5×C4○D4
kernel(C2×C20)⋊17D4C2×C4×Dic5C4×C5⋊D4C20.17D4Dic5⋊D4C20⋊D4Dic5⋊Q8C20.23D4C2×C4○D20C10×C4○D4C2×C20C2×C4○D4Dic5C22×C4C2×D4C2×Q8C2×C4C2
# reps1141411111428662168

In GAP, Magma, Sage, TeX

(C_2\times C_{20})\rtimes_{17}D_4
% in TeX

G:=Group("(C2xC20):17D4");
// GroupNames label

G:=SmallGroup(320,1504);
// by ID

G=gap.SmallGroup(320,1504);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,675,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=d^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^10,c*b*c^-1=d*b*d=b^9,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽