Copied to
clipboard

?

G = C10.392+ (1+4)order 320 = 26·5

39th non-split extension by C10 of 2+ (1+4) acting via 2+ (1+4)/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.392+ (1+4), C10.722- (1+4), (C4×D5)⋊2D4, C4⋊D411D5, C4.184(D4×D5), C202D419C2, C4⋊C4.180D10, D10.15(C2×D4), (C2×D4).92D10, C20.228(C2×D4), C22⋊C4.8D10, D10⋊D419C2, D102Q821C2, (C2×C20).39C23, Dic5.86(C2×D4), C10.67(C22×D4), Dic5⋊D413C2, C20.48D434C2, (C2×C10).152C24, (C22×C4).223D10, C2.41(D46D10), C23.16(C22×D5), (D4×C10).122C22, (C2×D20).228C22, C4⋊Dic5.207C22, (C2×Dic5).73C23, C22.173(C23×D5), Dic5.14D419C2, C23.D5.25C22, D10⋊C4.15C22, (C22×C10).187C23, (C22×C20).241C22, C53(C22.31C24), C10.D4.18C22, (C22×D5).197C23, C2.30(D4.10D10), (C2×Dic10).160C22, (C22×Dic5).109C22, C2.40(C2×D4×D5), (D5×C4⋊C4)⋊21C2, (C2×C4○D20)⋊21C2, (C5×C4⋊D4)⋊14C2, (C2×D42D5)⋊13C2, (C2×C4×D5).92C22, (C5×C4⋊C4).144C22, (C2×C4).586(C22×D5), (C2×C5⋊D4).28C22, (C5×C22⋊C4).13C22, SmallGroup(320,1280)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.392+ (1+4)
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — C10.392+ (1+4)
C5C2×C10 — C10.392+ (1+4)

Subgroups: 1102 in 294 conjugacy classes, 103 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×10], C22, C22 [×16], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×20], D4 [×16], Q8 [×4], C23, C23 [×2], C23 [×2], D5 [×3], C10 [×3], C10 [×3], C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4 [×7], C22×C4, C22×C4 [×6], C2×D4, C2×D4 [×2], C2×D4 [×7], C2×Q8 [×2], C4○D4 [×8], Dic5 [×2], Dic5 [×5], C20 [×2], C20 [×3], D10 [×2], D10 [×5], C2×C10, C2×C10 [×9], C2×C4⋊C4, C4⋊D4, C4⋊D4 [×7], C22⋊Q8 [×4], C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×4], C4×D5 [×4], D20 [×2], C2×Dic5 [×2], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×10], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×D5 [×2], C22×C10, C22×C10 [×2], C22.31C24, C10.D4 [×4], C4⋊Dic5, C4⋊Dic5 [×2], D10⋊C4 [×2], C23.D5 [×4], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10 [×2], C2×C4×D5 [×2], C2×C4×D5 [×2], C2×D20, C4○D20 [×4], D42D5 [×4], C22×Dic5 [×2], C2×C5⋊D4 [×2], C2×C5⋊D4 [×4], C22×C20, D4×C10, D4×C10 [×2], Dic5.14D4 [×2], D10⋊D4 [×2], D5×C4⋊C4, D102Q8, C20.48D4, C202D4, C202D4 [×2], Dic5⋊D4 [×2], C5×C4⋊D4, C2×C4○D20, C2×D42D5, C10.392+ (1+4)

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C22×D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.31C24, D4×D5 [×2], C23×D5, C2×D4×D5, D46D10, D4.10D10, C10.392+ (1+4)

Generators and relations
 G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=b2, bab-1=cac-1=a-1, ad=da, ae=ea, cbc-1=a5b-1, dbd-1=a5b, be=eb, dcd-1=ece=a5c, ede=a5b2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 90 30 74)(2 89 21 73)(3 88 22 72)(4 87 23 71)(5 86 24 80)(6 85 25 79)(7 84 26 78)(8 83 27 77)(9 82 28 76)(10 81 29 75)(11 99 159 105)(12 98 160 104)(13 97 151 103)(14 96 152 102)(15 95 153 101)(16 94 154 110)(17 93 155 109)(18 92 156 108)(19 91 157 107)(20 100 158 106)(31 68 47 52)(32 67 48 51)(33 66 49 60)(34 65 50 59)(35 64 41 58)(36 63 42 57)(37 62 43 56)(38 61 44 55)(39 70 45 54)(40 69 46 53)(111 132 127 148)(112 131 128 147)(113 140 129 146)(114 139 130 145)(115 138 121 144)(116 137 122 143)(117 136 123 142)(118 135 124 141)(119 134 125 150)(120 133 126 149)
(1 45 6 50)(2 44 7 49)(3 43 8 48)(4 42 9 47)(5 41 10 46)(11 134 16 139)(12 133 17 138)(13 132 18 137)(14 131 19 136)(15 140 20 135)(21 38 26 33)(22 37 27 32)(23 36 28 31)(24 35 29 40)(25 34 30 39)(51 77 56 72)(52 76 57 71)(53 75 58 80)(54 74 59 79)(55 73 60 78)(61 89 66 84)(62 88 67 83)(63 87 68 82)(64 86 69 81)(65 85 70 90)(91 112 96 117)(92 111 97 116)(93 120 98 115)(94 119 99 114)(95 118 100 113)(101 124 106 129)(102 123 107 128)(103 122 108 127)(104 121 109 126)(105 130 110 125)(141 153 146 158)(142 152 147 157)(143 151 148 156)(144 160 149 155)(145 159 150 154)
(1 150 30 134)(2 141 21 135)(3 142 22 136)(4 143 23 137)(5 144 24 138)(6 145 25 139)(7 146 26 140)(8 147 27 131)(9 148 28 132)(10 149 29 133)(11 45 159 39)(12 46 160 40)(13 47 151 31)(14 48 152 32)(15 49 153 33)(16 50 154 34)(17 41 155 35)(18 42 156 36)(19 43 157 37)(20 44 158 38)(51 107 67 91)(52 108 68 92)(53 109 69 93)(54 110 70 94)(55 101 61 95)(56 102 62 96)(57 103 63 97)(58 104 64 98)(59 105 65 99)(60 106 66 100)(71 127 87 111)(72 128 88 112)(73 129 89 113)(74 130 90 114)(75 121 81 115)(76 122 82 116)(77 123 83 117)(78 124 84 118)(79 125 85 119)(80 126 86 120)
(1 39)(2 40)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 139)(12 140)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 46)(22 47)(23 48)(24 49)(25 50)(26 41)(27 42)(28 43)(29 44)(30 45)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 121)(101 120)(102 111)(103 112)(104 113)(105 114)(106 115)(107 116)(108 117)(109 118)(110 119)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 151)(148 152)(149 153)(150 154)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,30,74)(2,89,21,73)(3,88,22,72)(4,87,23,71)(5,86,24,80)(6,85,25,79)(7,84,26,78)(8,83,27,77)(9,82,28,76)(10,81,29,75)(11,99,159,105)(12,98,160,104)(13,97,151,103)(14,96,152,102)(15,95,153,101)(16,94,154,110)(17,93,155,109)(18,92,156,108)(19,91,157,107)(20,100,158,106)(31,68,47,52)(32,67,48,51)(33,66,49,60)(34,65,50,59)(35,64,41,58)(36,63,42,57)(37,62,43,56)(38,61,44,55)(39,70,45,54)(40,69,46,53)(111,132,127,148)(112,131,128,147)(113,140,129,146)(114,139,130,145)(115,138,121,144)(116,137,122,143)(117,136,123,142)(118,135,124,141)(119,134,125,150)(120,133,126,149), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,134,16,139)(12,133,17,138)(13,132,18,137)(14,131,19,136)(15,140,20,135)(21,38,26,33)(22,37,27,32)(23,36,28,31)(24,35,29,40)(25,34,30,39)(51,77,56,72)(52,76,57,71)(53,75,58,80)(54,74,59,79)(55,73,60,78)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,112,96,117)(92,111,97,116)(93,120,98,115)(94,119,99,114)(95,118,100,113)(101,124,106,129)(102,123,107,128)(103,122,108,127)(104,121,109,126)(105,130,110,125)(141,153,146,158)(142,152,147,157)(143,151,148,156)(144,160,149,155)(145,159,150,154), (1,150,30,134)(2,141,21,135)(3,142,22,136)(4,143,23,137)(5,144,24,138)(6,145,25,139)(7,146,26,140)(8,147,27,131)(9,148,28,132)(10,149,29,133)(11,45,159,39)(12,46,160,40)(13,47,151,31)(14,48,152,32)(15,49,153,33)(16,50,154,34)(17,41,155,35)(18,42,156,36)(19,43,157,37)(20,44,158,38)(51,107,67,91)(52,108,68,92)(53,109,69,93)(54,110,70,94)(55,101,61,95)(56,102,62,96)(57,103,63,97)(58,104,64,98)(59,105,65,99)(60,106,66,100)(71,127,87,111)(72,128,88,112)(73,129,89,113)(74,130,90,114)(75,121,81,115)(76,122,82,116)(77,123,83,117)(78,124,84,118)(79,125,85,119)(80,126,86,120), (1,39)(2,40)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,139)(12,140)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,46)(22,47)(23,48)(24,49)(25,50)(26,41)(27,42)(28,43)(29,44)(30,45)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,121)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,151)(148,152)(149,153)(150,154)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,90,30,74)(2,89,21,73)(3,88,22,72)(4,87,23,71)(5,86,24,80)(6,85,25,79)(7,84,26,78)(8,83,27,77)(9,82,28,76)(10,81,29,75)(11,99,159,105)(12,98,160,104)(13,97,151,103)(14,96,152,102)(15,95,153,101)(16,94,154,110)(17,93,155,109)(18,92,156,108)(19,91,157,107)(20,100,158,106)(31,68,47,52)(32,67,48,51)(33,66,49,60)(34,65,50,59)(35,64,41,58)(36,63,42,57)(37,62,43,56)(38,61,44,55)(39,70,45,54)(40,69,46,53)(111,132,127,148)(112,131,128,147)(113,140,129,146)(114,139,130,145)(115,138,121,144)(116,137,122,143)(117,136,123,142)(118,135,124,141)(119,134,125,150)(120,133,126,149), (1,45,6,50)(2,44,7,49)(3,43,8,48)(4,42,9,47)(5,41,10,46)(11,134,16,139)(12,133,17,138)(13,132,18,137)(14,131,19,136)(15,140,20,135)(21,38,26,33)(22,37,27,32)(23,36,28,31)(24,35,29,40)(25,34,30,39)(51,77,56,72)(52,76,57,71)(53,75,58,80)(54,74,59,79)(55,73,60,78)(61,89,66,84)(62,88,67,83)(63,87,68,82)(64,86,69,81)(65,85,70,90)(91,112,96,117)(92,111,97,116)(93,120,98,115)(94,119,99,114)(95,118,100,113)(101,124,106,129)(102,123,107,128)(103,122,108,127)(104,121,109,126)(105,130,110,125)(141,153,146,158)(142,152,147,157)(143,151,148,156)(144,160,149,155)(145,159,150,154), (1,150,30,134)(2,141,21,135)(3,142,22,136)(4,143,23,137)(5,144,24,138)(6,145,25,139)(7,146,26,140)(8,147,27,131)(9,148,28,132)(10,149,29,133)(11,45,159,39)(12,46,160,40)(13,47,151,31)(14,48,152,32)(15,49,153,33)(16,50,154,34)(17,41,155,35)(18,42,156,36)(19,43,157,37)(20,44,158,38)(51,107,67,91)(52,108,68,92)(53,109,69,93)(54,110,70,94)(55,101,61,95)(56,102,62,96)(57,103,63,97)(58,104,64,98)(59,105,65,99)(60,106,66,100)(71,127,87,111)(72,128,88,112)(73,129,89,113)(74,130,90,114)(75,121,81,115)(76,122,82,116)(77,123,83,117)(78,124,84,118)(79,125,85,119)(80,126,86,120), (1,39)(2,40)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,139)(12,140)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,46)(22,47)(23,48)(24,49)(25,50)(26,41)(27,42)(28,43)(29,44)(30,45)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,121)(101,120)(102,111)(103,112)(104,113)(105,114)(106,115)(107,116)(108,117)(109,118)(110,119)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,151)(148,152)(149,153)(150,154) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,90,30,74),(2,89,21,73),(3,88,22,72),(4,87,23,71),(5,86,24,80),(6,85,25,79),(7,84,26,78),(8,83,27,77),(9,82,28,76),(10,81,29,75),(11,99,159,105),(12,98,160,104),(13,97,151,103),(14,96,152,102),(15,95,153,101),(16,94,154,110),(17,93,155,109),(18,92,156,108),(19,91,157,107),(20,100,158,106),(31,68,47,52),(32,67,48,51),(33,66,49,60),(34,65,50,59),(35,64,41,58),(36,63,42,57),(37,62,43,56),(38,61,44,55),(39,70,45,54),(40,69,46,53),(111,132,127,148),(112,131,128,147),(113,140,129,146),(114,139,130,145),(115,138,121,144),(116,137,122,143),(117,136,123,142),(118,135,124,141),(119,134,125,150),(120,133,126,149)], [(1,45,6,50),(2,44,7,49),(3,43,8,48),(4,42,9,47),(5,41,10,46),(11,134,16,139),(12,133,17,138),(13,132,18,137),(14,131,19,136),(15,140,20,135),(21,38,26,33),(22,37,27,32),(23,36,28,31),(24,35,29,40),(25,34,30,39),(51,77,56,72),(52,76,57,71),(53,75,58,80),(54,74,59,79),(55,73,60,78),(61,89,66,84),(62,88,67,83),(63,87,68,82),(64,86,69,81),(65,85,70,90),(91,112,96,117),(92,111,97,116),(93,120,98,115),(94,119,99,114),(95,118,100,113),(101,124,106,129),(102,123,107,128),(103,122,108,127),(104,121,109,126),(105,130,110,125),(141,153,146,158),(142,152,147,157),(143,151,148,156),(144,160,149,155),(145,159,150,154)], [(1,150,30,134),(2,141,21,135),(3,142,22,136),(4,143,23,137),(5,144,24,138),(6,145,25,139),(7,146,26,140),(8,147,27,131),(9,148,28,132),(10,149,29,133),(11,45,159,39),(12,46,160,40),(13,47,151,31),(14,48,152,32),(15,49,153,33),(16,50,154,34),(17,41,155,35),(18,42,156,36),(19,43,157,37),(20,44,158,38),(51,107,67,91),(52,108,68,92),(53,109,69,93),(54,110,70,94),(55,101,61,95),(56,102,62,96),(57,103,63,97),(58,104,64,98),(59,105,65,99),(60,106,66,100),(71,127,87,111),(72,128,88,112),(73,129,89,113),(74,130,90,114),(75,121,81,115),(76,122,82,116),(77,123,83,117),(78,124,84,118),(79,125,85,119),(80,126,86,120)], [(1,39),(2,40),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,139),(12,140),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,46),(22,47),(23,48),(24,49),(25,50),(26,41),(27,42),(28,43),(29,44),(30,45),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,121),(101,120),(102,111),(103,112),(104,113),(105,114),(106,115),(107,116),(108,117),(109,118),(110,119),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,151),(148,152),(149,153),(150,154)])

Matrix representation G ⊆ GL8(𝔽41)

77000000
3440000000
004000000
000400000
000040000
000004000
000000400
000000040
,
400000000
71000000
00010000
00100000
000010039
0000400401
00000101
000010040
,
10000000
3440000000
000400000
00100000
00001200
0000404000
0000040040
00001110
,
400000000
040000000
004000000
00010000
0000183510
00002032021
000003203
00002118240
,
10000000
01000000
00010000
00100000
00001200
000004000
0000404001
00001110

G:=sub<GL(8,GF(41))| [7,34,0,0,0,0,0,0,7,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,40,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,39,1,1,40],[1,34,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,40,0,1,0,0,0,0,2,40,40,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,20,0,21,0,0,0,0,35,3,3,18,0,0,0,0,1,20,20,24,0,0,0,0,0,21,3,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,40,1,0,0,0,0,2,40,40,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H···4L5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order122222222244444444···45510···10101010101010101020···2020202020
size111144410102022444101020···20222···2444488884···48888

50 irreducible representations

dim1111111111122222244444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2D4D5D10D10D10D102+ (1+4)2- (1+4)D4×D5D46D10D4.10D10
kernelC10.392+ (1+4)Dic5.14D4D10⋊D4D5×C4⋊C4D102Q8C20.48D4C202D4Dic5⋊D4C5×C4⋊D4C2×C4○D20C2×D42D5C4×D5C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C10C10C4C2C2
# reps1221113211142422611444

In GAP, Magma, Sage, TeX

C_{10}._{39}2_+^{(1+4)}
% in TeX

G:=Group("C10.39ES+(2,2)");
// GroupNames label

G:=SmallGroup(320,1280);
// by ID

G=gap.SmallGroup(320,1280);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,1123,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=b^2,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=a^5*b,b*e=e*b,d*c*d^-1=e*c*e=a^5*c,e*d*e=a^5*b^2*d>;
// generators/relations

׿
×
𝔽