Copied to
clipboard

?

G = C2×D40⋊C2order 320 = 26·5

Direct product of C2 and D40⋊C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D40⋊C2, C404C23, SD168D10, D202C23, C20.6C24, D4020C22, (C2×C8)⋊10D10, C4.43(D4×D5), C84(C22×D5), (C2×D40)⋊26C2, C52C82C23, (C2×Q8)⋊21D10, (C2×SD16)⋊4D5, (C4×D5).15D4, C20.81(C2×D4), (D4×D5)⋊6C22, Q8⋊D58C22, Q82(C22×D5), (C5×Q8)⋊2C23, C4.6(C23×D5), C103(C8⋊C22), (C2×C40)⋊13C22, D4⋊D510C22, (C10×SD16)⋊5C2, D10.84(C2×D4), C8⋊D58C22, (C5×D4).4C23, D4.4(C22×D5), (C4×D5).3C23, (C2×D4).182D10, (C2×D20)⋊33C22, Dic5.95(C2×D4), (Q8×C10)⋊18C22, Q82D55C22, (C5×SD16)⋊8C22, C22.139(D4×D5), (C2×C20).523C23, (C2×Dic5).248D4, (C22×D5).135D4, C10.107(C22×D4), (D4×C10).164C22, (C2×D4×D5)⋊23C2, C53(C2×C8⋊C22), C2.80(C2×D4×D5), (C2×D4⋊D5)⋊27C2, (C2×C8⋊D5)⋊4C2, (C2×Q8⋊D5)⋊26C2, (C2×C52C8)⋊15C22, (C2×Q82D5)⋊14C2, (C2×C10).396(C2×D4), (C2×C4×D5).165C22, (C2×C4).612(C22×D5), SmallGroup(320,1431)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D40⋊C2
C1C5C10C20C4×D5C2×C4×D5C2×D4×D5 — C2×D40⋊C2
C5C10C20 — C2×D40⋊C2

Subgroups: 1374 in 298 conjugacy classes, 103 normal (33 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×4], C22, C22 [×24], C5, C8 [×2], C8 [×2], C2×C4, C2×C4 [×10], D4 [×2], D4 [×15], Q8 [×2], Q8, C23 [×12], D5 [×6], C10, C10 [×2], C10 [×2], C2×C8, C2×C8, M4(2) [×4], D8 [×8], SD16 [×4], SD16 [×4], C22×C4 [×2], C2×D4, C2×D4 [×10], C2×Q8, C4○D4 [×6], C24, Dic5 [×2], C20 [×2], C20 [×2], D10 [×2], D10 [×18], C2×C10, C2×C10 [×4], C2×M4(2), C2×D8 [×2], C2×SD16, C2×SD16, C8⋊C22 [×8], C22×D4, C2×C4○D4, C52C8 [×2], C40 [×2], C4×D5 [×4], C4×D5 [×4], D20 [×4], D20 [×6], C2×Dic5, C5⋊D4 [×4], C2×C20, C2×C20, C5×D4 [×2], C5×D4, C5×Q8 [×2], C5×Q8, C22×D5, C22×D5 [×10], C22×C10, C2×C8⋊C22, C8⋊D5 [×4], D40 [×4], C2×C52C8, D4⋊D5 [×4], Q8⋊D5 [×4], C2×C40, C5×SD16 [×4], C2×C4×D5, C2×C4×D5, C2×D20 [×2], C2×D20, D4×D5 [×4], D4×D5 [×2], Q82D5 [×4], Q82D5 [×2], C2×C5⋊D4, D4×C10, Q8×C10, C23×D5, C2×C8⋊D5, C2×D40, D40⋊C2 [×8], C2×D4⋊D5, C2×Q8⋊D5, C10×SD16, C2×D4×D5, C2×Q82D5, C2×D40⋊C2

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C24, D10 [×7], C8⋊C22 [×2], C22×D4, C22×D5 [×7], C2×C8⋊C22, D4×D5 [×2], C23×D5, D40⋊C2 [×2], C2×D4×D5, C2×D40⋊C2

Generators and relations
 G = < a,b,c,d | a2=b40=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd=b11, cd=dc >

Smallest permutation representation
On 80 points
Generators in S80
(1 66)(2 67)(3 68)(4 69)(5 70)(6 71)(7 72)(8 73)(9 74)(10 75)(11 76)(12 77)(13 78)(14 79)(15 80)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 57)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(41 65)(42 64)(43 63)(44 62)(45 61)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(66 80)(67 79)(68 78)(69 77)(70 76)(71 75)(72 74)
(1 11)(2 22)(3 33)(5 15)(6 26)(7 37)(9 19)(10 30)(13 23)(14 34)(17 27)(18 38)(21 31)(25 35)(29 39)(42 52)(43 63)(44 74)(46 56)(47 67)(48 78)(50 60)(51 71)(54 64)(55 75)(58 68)(59 79)(62 72)(66 76)(70 80)

G:=sub<Sym(80)| (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74), (1,11)(2,22)(3,33)(5,15)(6,26)(7,37)(9,19)(10,30)(13,23)(14,34)(17,27)(18,38)(21,31)(25,35)(29,39)(42,52)(43,63)(44,74)(46,56)(47,67)(48,78)(50,60)(51,71)(54,64)(55,75)(58,68)(59,79)(62,72)(66,76)(70,80)>;

G:=Group( (1,66)(2,67)(3,68)(4,69)(5,70)(6,71)(7,72)(8,73)(9,74)(10,75)(11,76)(12,77)(13,78)(14,79)(15,80)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,65)(42,64)(43,63)(44,62)(45,61)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(66,80)(67,79)(68,78)(69,77)(70,76)(71,75)(72,74), (1,11)(2,22)(3,33)(5,15)(6,26)(7,37)(9,19)(10,30)(13,23)(14,34)(17,27)(18,38)(21,31)(25,35)(29,39)(42,52)(43,63)(44,74)(46,56)(47,67)(48,78)(50,60)(51,71)(54,64)(55,75)(58,68)(59,79)(62,72)(66,76)(70,80) );

G=PermutationGroup([(1,66),(2,67),(3,68),(4,69),(5,70),(6,71),(7,72),(8,73),(9,74),(10,75),(11,76),(12,77),(13,78),(14,79),(15,80),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,57),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(41,65),(42,64),(43,63),(44,62),(45,61),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(66,80),(67,79),(68,78),(69,77),(70,76),(71,75),(72,74)], [(1,11),(2,22),(3,33),(5,15),(6,26),(7,37),(9,19),(10,30),(13,23),(14,34),(17,27),(18,38),(21,31),(25,35),(29,39),(42,52),(43,63),(44,74),(46,56),(47,67),(48,78),(50,60),(51,71),(54,64),(55,75),(58,68),(59,79),(62,72),(66,76),(70,80)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
7350000
700000
0026262626
0015341534
00282800
00132400
,
4010000
010000
00040039
00400390
000001
000010
,
4000000
0400000
001020
000102
0000400
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,7,0,0,0,0,35,0,0,0,0,0,0,0,26,15,28,13,0,0,26,34,28,24,0,0,26,15,0,0,0,0,26,34,0,0],[40,0,0,0,0,0,1,1,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,39,0,1,0,0,39,0,1,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,40,0,0,0,0,2,0,40] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222222244444455888810···1010101010202020202020202040···40
size11114410102020202022441010224420202···28888444488884···4

50 irreducible representations

dim111111111222222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D4D5D10D10D10D10C8⋊C22D4×D5D4×D5D40⋊C2
kernelC2×D40⋊C2C2×C8⋊D5C2×D40D40⋊C2C2×D4⋊D5C2×Q8⋊D5C10×SD16C2×D4×D5C2×Q82D5C4×D5C2×Dic5C22×D5C2×SD16C2×C8SD16C2×D4C2×Q8C10C4C22C2
# reps111811111211228222228

In GAP, Magma, Sage, TeX

C_2\times D_{40}\rtimes C_2
% in TeX

G:=Group("C2xD40:C2");
// GroupNames label

G:=SmallGroup(320,1431);
// by ID

G=gap.SmallGroup(320,1431);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,1123,185,136,438,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^40=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d=b^11,c*d=d*c>;
// generators/relations

׿
×
𝔽