Copied to
clipboard

?

G = C4⋊C4.178D10order 320 = 26·5

51st non-split extension by C4⋊C4 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.178D10, (D4×Dic5)⋊16C2, C4⋊D4.10D5, (C2×D4).152D10, C22⋊C4.47D10, C4.Dic1018C2, Dic53Q821C2, C20.201(C4○D4), C20.48D431C2, C4.67(D42D5), C20.17D415C2, (C2×C10).144C24, (C2×C20).501C23, (C22×C4).367D10, C23.11(C22×D5), Dic5.72(C4○D4), (D4×C10).118C22, C22.5(D42D5), C23.D1014C2, C23.11D104C2, C23.18D107C2, C4⋊Dic5.205C22, (C22×C10).15C23, (C4×Dic5).99C22, C22.165(C23×D5), C23.D5.21C22, (C22×C20).238C22, C56(C23.36C23), (C2×Dic5).236C23, C10.D4.15C22, (C2×Dic10).158C22, (C22×Dic5).105C22, (C2×C4×Dic5)⋊8C2, C2.35(D5×C4○D4), (C5×C4⋊D4).7C2, C10.149(C2×C4○D4), C2.32(C2×D42D5), (C2×C10).20(C4○D4), (C5×C4⋊C4).140C22, (C2×C4).292(C22×D5), (C5×C22⋊C4).9C22, SmallGroup(320,1272)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C4⋊C4.178D10
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C4⋊C4.178D10
C5C2×C10 — C4⋊C4.178D10

Subgroups: 670 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×2], C22 [×8], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×18], D4 [×6], Q8 [×2], C23, C23 [×2], C10 [×3], C10 [×4], C42 [×6], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×9], C22×C4, C22×C4 [×4], C2×D4, C2×D4 [×2], C2×Q8, Dic5 [×2], Dic5 [×7], C20 [×2], C20 [×3], C2×C10, C2×C10 [×2], C2×C10 [×8], C2×C42, C42⋊C2 [×2], C4×D4 [×3], C4×Q8, C4⋊D4, C22⋊Q8, C22.D4 [×2], C4.4D4, C42.C2, C422C2 [×2], Dic10 [×2], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×8], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×6], C22×C10, C22×C10 [×2], C23.36C23, C4×Dic5 [×4], C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5, C4⋊Dic5 [×2], C23.D5 [×8], C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C22×Dic5 [×2], C22×Dic5 [×2], C22×C20, D4×C10, D4×C10 [×2], C23.11D10 [×2], C23.D10 [×2], Dic53Q8, C4.Dic10, C2×C4×Dic5, C20.48D4, D4×Dic5, D4×Dic5 [×2], C23.18D10 [×2], C20.17D4, C5×C4⋊D4, C4⋊C4.178D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×6], C24, D10 [×7], C2×C4○D4 [×3], C22×D5 [×7], C23.36C23, D42D5 [×4], C23×D5, C2×D42D5 [×2], D5×C4○D4, C4⋊C4.178D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 27 32 50)(2 28 33 41)(3 29 34 42)(4 30 35 43)(5 21 36 44)(6 22 37 45)(7 23 38 46)(8 24 39 47)(9 25 40 48)(10 26 31 49)(11 74 54 112)(12 75 55 113)(13 76 56 114)(14 77 57 115)(15 78 58 116)(16 79 59 117)(17 80 60 118)(18 71 51 119)(19 72 52 120)(20 73 53 111)(61 96 158 148)(62 97 159 149)(63 98 160 150)(64 99 151 141)(65 100 152 142)(66 91 153 143)(67 92 154 144)(68 93 155 145)(69 94 156 146)(70 95 157 147)(81 123 133 106)(82 124 134 107)(83 125 135 108)(84 126 136 109)(85 127 137 110)(86 128 138 101)(87 129 139 102)(88 130 140 103)(89 121 131 104)(90 122 132 105)
(1 116 111 6)(2 7 112 117)(3 118 113 8)(4 9 114 119)(5 120 115 10)(11 59 28 46)(12 47 29 60)(13 51 30 48)(14 49 21 52)(15 53 22 50)(16 41 23 54)(17 55 24 42)(18 43 25 56)(19 57 26 44)(20 45 27 58)(31 36 72 77)(32 78 73 37)(33 38 74 79)(34 80 75 39)(35 40 76 71)(61 66 104 109)(62 110 105 67)(63 68 106 101)(64 102 107 69)(65 70 108 103)(81 138 98 145)(82 146 99 139)(83 140 100 147)(84 148 91 131)(85 132 92 149)(86 150 93 133)(87 134 94 141)(88 142 95 135)(89 136 96 143)(90 144 97 137)(121 126 158 153)(122 154 159 127)(123 128 160 155)(124 156 151 129)(125 130 152 157)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 156 73 102)(2 155 74 101)(3 154 75 110)(4 153 76 109)(5 152 77 108)(6 151 78 107)(7 160 79 106)(8 159 80 105)(9 158 71 104)(10 157 72 103)(11 138 41 93)(12 137 42 92)(13 136 43 91)(14 135 44 100)(15 134 45 99)(16 133 46 98)(17 132 47 97)(18 131 48 96)(19 140 49 95)(20 139 50 94)(21 142 57 83)(22 141 58 82)(23 150 59 81)(24 149 60 90)(25 148 51 89)(26 147 52 88)(27 146 53 87)(28 145 54 86)(29 144 55 85)(30 143 56 84)(31 70 120 130)(32 69 111 129)(33 68 112 128)(34 67 113 127)(35 66 114 126)(36 65 115 125)(37 64 116 124)(38 63 117 123)(39 62 118 122)(40 61 119 121)

G:=sub<Sym(160)| (1,27,32,50)(2,28,33,41)(3,29,34,42)(4,30,35,43)(5,21,36,44)(6,22,37,45)(7,23,38,46)(8,24,39,47)(9,25,40,48)(10,26,31,49)(11,74,54,112)(12,75,55,113)(13,76,56,114)(14,77,57,115)(15,78,58,116)(16,79,59,117)(17,80,60,118)(18,71,51,119)(19,72,52,120)(20,73,53,111)(61,96,158,148)(62,97,159,149)(63,98,160,150)(64,99,151,141)(65,100,152,142)(66,91,153,143)(67,92,154,144)(68,93,155,145)(69,94,156,146)(70,95,157,147)(81,123,133,106)(82,124,134,107)(83,125,135,108)(84,126,136,109)(85,127,137,110)(86,128,138,101)(87,129,139,102)(88,130,140,103)(89,121,131,104)(90,122,132,105), (1,116,111,6)(2,7,112,117)(3,118,113,8)(4,9,114,119)(5,120,115,10)(11,59,28,46)(12,47,29,60)(13,51,30,48)(14,49,21,52)(15,53,22,50)(16,41,23,54)(17,55,24,42)(18,43,25,56)(19,57,26,44)(20,45,27,58)(31,36,72,77)(32,78,73,37)(33,38,74,79)(34,80,75,39)(35,40,76,71)(61,66,104,109)(62,110,105,67)(63,68,106,101)(64,102,107,69)(65,70,108,103)(81,138,98,145)(82,146,99,139)(83,140,100,147)(84,148,91,131)(85,132,92,149)(86,150,93,133)(87,134,94,141)(88,142,95,135)(89,136,96,143)(90,144,97,137)(121,126,158,153)(122,154,159,127)(123,128,160,155)(124,156,151,129)(125,130,152,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,156,73,102)(2,155,74,101)(3,154,75,110)(4,153,76,109)(5,152,77,108)(6,151,78,107)(7,160,79,106)(8,159,80,105)(9,158,71,104)(10,157,72,103)(11,138,41,93)(12,137,42,92)(13,136,43,91)(14,135,44,100)(15,134,45,99)(16,133,46,98)(17,132,47,97)(18,131,48,96)(19,140,49,95)(20,139,50,94)(21,142,57,83)(22,141,58,82)(23,150,59,81)(24,149,60,90)(25,148,51,89)(26,147,52,88)(27,146,53,87)(28,145,54,86)(29,144,55,85)(30,143,56,84)(31,70,120,130)(32,69,111,129)(33,68,112,128)(34,67,113,127)(35,66,114,126)(36,65,115,125)(37,64,116,124)(38,63,117,123)(39,62,118,122)(40,61,119,121)>;

G:=Group( (1,27,32,50)(2,28,33,41)(3,29,34,42)(4,30,35,43)(5,21,36,44)(6,22,37,45)(7,23,38,46)(8,24,39,47)(9,25,40,48)(10,26,31,49)(11,74,54,112)(12,75,55,113)(13,76,56,114)(14,77,57,115)(15,78,58,116)(16,79,59,117)(17,80,60,118)(18,71,51,119)(19,72,52,120)(20,73,53,111)(61,96,158,148)(62,97,159,149)(63,98,160,150)(64,99,151,141)(65,100,152,142)(66,91,153,143)(67,92,154,144)(68,93,155,145)(69,94,156,146)(70,95,157,147)(81,123,133,106)(82,124,134,107)(83,125,135,108)(84,126,136,109)(85,127,137,110)(86,128,138,101)(87,129,139,102)(88,130,140,103)(89,121,131,104)(90,122,132,105), (1,116,111,6)(2,7,112,117)(3,118,113,8)(4,9,114,119)(5,120,115,10)(11,59,28,46)(12,47,29,60)(13,51,30,48)(14,49,21,52)(15,53,22,50)(16,41,23,54)(17,55,24,42)(18,43,25,56)(19,57,26,44)(20,45,27,58)(31,36,72,77)(32,78,73,37)(33,38,74,79)(34,80,75,39)(35,40,76,71)(61,66,104,109)(62,110,105,67)(63,68,106,101)(64,102,107,69)(65,70,108,103)(81,138,98,145)(82,146,99,139)(83,140,100,147)(84,148,91,131)(85,132,92,149)(86,150,93,133)(87,134,94,141)(88,142,95,135)(89,136,96,143)(90,144,97,137)(121,126,158,153)(122,154,159,127)(123,128,160,155)(124,156,151,129)(125,130,152,157), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,156,73,102)(2,155,74,101)(3,154,75,110)(4,153,76,109)(5,152,77,108)(6,151,78,107)(7,160,79,106)(8,159,80,105)(9,158,71,104)(10,157,72,103)(11,138,41,93)(12,137,42,92)(13,136,43,91)(14,135,44,100)(15,134,45,99)(16,133,46,98)(17,132,47,97)(18,131,48,96)(19,140,49,95)(20,139,50,94)(21,142,57,83)(22,141,58,82)(23,150,59,81)(24,149,60,90)(25,148,51,89)(26,147,52,88)(27,146,53,87)(28,145,54,86)(29,144,55,85)(30,143,56,84)(31,70,120,130)(32,69,111,129)(33,68,112,128)(34,67,113,127)(35,66,114,126)(36,65,115,125)(37,64,116,124)(38,63,117,123)(39,62,118,122)(40,61,119,121) );

G=PermutationGroup([(1,27,32,50),(2,28,33,41),(3,29,34,42),(4,30,35,43),(5,21,36,44),(6,22,37,45),(7,23,38,46),(8,24,39,47),(9,25,40,48),(10,26,31,49),(11,74,54,112),(12,75,55,113),(13,76,56,114),(14,77,57,115),(15,78,58,116),(16,79,59,117),(17,80,60,118),(18,71,51,119),(19,72,52,120),(20,73,53,111),(61,96,158,148),(62,97,159,149),(63,98,160,150),(64,99,151,141),(65,100,152,142),(66,91,153,143),(67,92,154,144),(68,93,155,145),(69,94,156,146),(70,95,157,147),(81,123,133,106),(82,124,134,107),(83,125,135,108),(84,126,136,109),(85,127,137,110),(86,128,138,101),(87,129,139,102),(88,130,140,103),(89,121,131,104),(90,122,132,105)], [(1,116,111,6),(2,7,112,117),(3,118,113,8),(4,9,114,119),(5,120,115,10),(11,59,28,46),(12,47,29,60),(13,51,30,48),(14,49,21,52),(15,53,22,50),(16,41,23,54),(17,55,24,42),(18,43,25,56),(19,57,26,44),(20,45,27,58),(31,36,72,77),(32,78,73,37),(33,38,74,79),(34,80,75,39),(35,40,76,71),(61,66,104,109),(62,110,105,67),(63,68,106,101),(64,102,107,69),(65,70,108,103),(81,138,98,145),(82,146,99,139),(83,140,100,147),(84,148,91,131),(85,132,92,149),(86,150,93,133),(87,134,94,141),(88,142,95,135),(89,136,96,143),(90,144,97,137),(121,126,158,153),(122,154,159,127),(123,128,160,155),(124,156,151,129),(125,130,152,157)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,156,73,102),(2,155,74,101),(3,154,75,110),(4,153,76,109),(5,152,77,108),(6,151,78,107),(7,160,79,106),(8,159,80,105),(9,158,71,104),(10,157,72,103),(11,138,41,93),(12,137,42,92),(13,136,43,91),(14,135,44,100),(15,134,45,99),(16,133,46,98),(17,132,47,97),(18,131,48,96),(19,140,49,95),(20,139,50,94),(21,142,57,83),(22,141,58,82),(23,150,59,81),(24,149,60,90),(25,148,51,89),(26,147,52,88),(27,146,53,87),(28,145,54,86),(29,144,55,85),(30,143,56,84),(31,70,120,130),(32,69,111,129),(33,68,112,128),(34,67,113,127),(35,66,114,126),(36,65,115,125),(37,64,116,124),(38,63,117,123),(39,62,118,122),(40,61,119,121)])

Matrix representation G ⊆ GL6(𝔽41)

150000
16400000
0012500
00364000
000010
000001
,
940000
0320000
0012500
0004000
0000400
0000040
,
940000
21320000
001000
000100
000076
0000340
,
32370000
2090000
009000
000900
0000400
000081

G:=sub<GL(6,GF(41))| [1,16,0,0,0,0,5,40,0,0,0,0,0,0,1,36,0,0,0,0,25,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,4,32,0,0,0,0,0,0,1,0,0,0,0,0,25,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,21,0,0,0,0,4,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,34,0,0,0,0,6,0],[32,20,0,0,0,0,37,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,8,0,0,0,0,0,1] >;

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R4S4T5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order1222222244444444444···444445510···10101010101010101020···2020202020
size11112244222244555510···1020202020222···2444488884···48888

56 irreducible representations

dim1111111111122222222444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4C4○D4D10D10D10D10D42D5D42D5D5×C4○D4
kernelC4⋊C4.178D10C23.11D10C23.D10Dic53Q8C4.Dic10C2×C4×Dic5C20.48D4D4×Dic5C23.18D10C20.17D4C5×C4⋊D4C4⋊D4Dic5C20C2×C10C22⋊C4C4⋊C4C22×C4C2×D4C4C22C2
# reps1221111321124444226444

In GAP, Magma, Sage, TeX

C_4\rtimes C_4._{178}D_{10}
% in TeX

G:=Group("C4:C4.178D10");
// GroupNames label

G:=SmallGroup(320,1272);
// by ID

G=gap.SmallGroup(320,1272);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,794,297,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽