Copied to
clipboard

?

G = Dic1020D4order 320 = 26·5

8th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1020D4, C10.332+ (1+4), C4⋊D47D5, C53(Q86D4), C4.109(D4×D5), C20⋊D415C2, C42D2019C2, C4⋊C4.177D10, (C2×D4).90D10, C20.225(C2×D4), D10⋊D417C2, Dic58(C4○D4), Dic54D46C2, (C2×C20).35C23, C22⋊C4.46D10, Dic5.45(C2×D4), C10.62(C22×D4), Dic5⋊D410C2, Dic53Q820C2, (C2×C10).143C24, (C22×C4).219D10, C2.35(D46D10), C23.10(C22×D5), (C2×D20).148C22, (D4×C10).117C22, (C22×C10).14C23, (C4×Dic5).98C22, (C22×D5).62C23, C22.164(C23×D5), D10⋊C4.12C22, (C22×C20).237C22, (C2×Dic5).235C23, C10.D4.14C22, C23.D5.110C22, (C2×Dic10).301C22, (C22×Dic5).104C22, C2.35(C2×D4×D5), (C5×C4⋊D4)⋊8C2, (C4×C5⋊D4)⋊15C2, C2.34(D5×C4○D4), (C2×C4○D20)⋊19C2, (C2×D42D5)⋊11C2, (C2×C4×D5).91C22, C10.148(C2×C4○D4), (C5×C4⋊C4).139C22, (C2×C4).585(C22×D5), (C2×C5⋊D4).25C22, (C5×C22⋊C4).8C22, SmallGroup(320,1271)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1020D4
C1C5C10C2×C10C2×Dic5C2×Dic10C2×C4○D20 — Dic1020D4
C5C2×C10 — Dic1020D4

Subgroups: 1222 in 312 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×6], C4 [×2], C4 [×11], C22, C22 [×18], C5, C2×C4 [×2], C2×C4 [×2], C2×C4 [×17], D4 [×24], Q8 [×4], C23, C23 [×2], C23 [×3], D5 [×3], C10 [×3], C10 [×3], C42 [×3], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×3], C22×C4, C22×C4 [×5], C2×D4, C2×D4 [×2], C2×D4 [×12], C2×Q8, C4○D4 [×8], Dic5 [×6], Dic5 [×2], C20 [×2], C20 [×3], D10 [×9], C2×C10, C2×C10 [×9], C4×D4 [×3], C4×Q8, C4⋊D4, C4⋊D4 [×5], C41D4 [×3], C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×6], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C2×Dic5 [×4], C5⋊D4 [×16], C2×C20 [×2], C2×C20 [×2], C2×C20 [×2], C5×D4 [×4], C22×D5, C22×D5 [×2], C22×C10, C22×C10 [×2], Q86D4, C4×Dic5, C4×Dic5 [×2], C10.D4, C10.D4 [×2], D10⋊C4, D10⋊C4 [×2], C23.D5, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5 [×2], C2×D20, C2×D20 [×2], C4○D20 [×4], D42D5 [×4], C22×Dic5 [×2], C2×C5⋊D4, C2×C5⋊D4 [×8], C22×C20, D4×C10, D4×C10 [×2], Dic54D4 [×2], D10⋊D4 [×2], Dic53Q8, C42D20, C4×C5⋊D4, Dic5⋊D4 [×2], C20⋊D4, C20⋊D4 [×2], C5×C4⋊D4, C2×C4○D20, C2×D42D5, Dic1020D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2+ (1+4), C22×D5 [×7], Q86D4, D4×D5 [×2], C23×D5, C2×D4×D5, D46D10, D5×C4○D4, Dic1020D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a11, ad=da, cbc-1=dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 95 11 85)(2 94 12 84)(3 93 13 83)(4 92 14 82)(5 91 15 81)(6 90 16 100)(7 89 17 99)(8 88 18 98)(9 87 19 97)(10 86 20 96)(21 61 31 71)(22 80 32 70)(23 79 33 69)(24 78 34 68)(25 77 35 67)(26 76 36 66)(27 75 37 65)(28 74 38 64)(29 73 39 63)(30 72 40 62)(41 151 51 141)(42 150 52 160)(43 149 53 159)(44 148 54 158)(45 147 55 157)(46 146 56 156)(47 145 57 155)(48 144 58 154)(49 143 59 153)(50 142 60 152)(101 123 111 133)(102 122 112 132)(103 121 113 131)(104 140 114 130)(105 139 115 129)(106 138 116 128)(107 137 117 127)(108 136 118 126)(109 135 119 125)(110 134 120 124)
(1 63 155 129)(2 74 156 140)(3 65 157 131)(4 76 158 122)(5 67 159 133)(6 78 160 124)(7 69 141 135)(8 80 142 126)(9 71 143 137)(10 62 144 128)(11 73 145 139)(12 64 146 130)(13 75 147 121)(14 66 148 132)(15 77 149 123)(16 68 150 134)(17 79 151 125)(18 70 152 136)(19 61 153 127)(20 72 154 138)(21 49 117 97)(22 60 118 88)(23 51 119 99)(24 42 120 90)(25 53 101 81)(26 44 102 92)(27 55 103 83)(28 46 104 94)(29 57 105 85)(30 48 106 96)(31 59 107 87)(32 50 108 98)(33 41 109 89)(34 52 110 100)(35 43 111 91)(36 54 112 82)(37 45 113 93)(38 56 114 84)(39 47 115 95)(40 58 116 86)
(1 90)(2 91)(3 92)(4 93)(5 94)(6 95)(7 96)(8 97)(9 98)(10 99)(11 100)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 121)(37 122)(38 123)(39 124)(40 125)(41 154)(42 155)(43 156)(44 157)(45 158)(46 159)(47 160)(48 141)(49 142)(50 143)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 150)(58 151)(59 152)(60 153)(61 118)(62 119)(63 120)(64 101)(65 102)(66 103)(67 104)(68 105)(69 106)(70 107)(71 108)(72 109)(73 110)(74 111)(75 112)(76 113)(77 114)(78 115)(79 116)(80 117)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,11,85)(2,94,12,84)(3,93,13,83)(4,92,14,82)(5,91,15,81)(6,90,16,100)(7,89,17,99)(8,88,18,98)(9,87,19,97)(10,86,20,96)(21,61,31,71)(22,80,32,70)(23,79,33,69)(24,78,34,68)(25,77,35,67)(26,76,36,66)(27,75,37,65)(28,74,38,64)(29,73,39,63)(30,72,40,62)(41,151,51,141)(42,150,52,160)(43,149,53,159)(44,148,54,158)(45,147,55,157)(46,146,56,156)(47,145,57,155)(48,144,58,154)(49,143,59,153)(50,142,60,152)(101,123,111,133)(102,122,112,132)(103,121,113,131)(104,140,114,130)(105,139,115,129)(106,138,116,128)(107,137,117,127)(108,136,118,126)(109,135,119,125)(110,134,120,124), (1,63,155,129)(2,74,156,140)(3,65,157,131)(4,76,158,122)(5,67,159,133)(6,78,160,124)(7,69,141,135)(8,80,142,126)(9,71,143,137)(10,62,144,128)(11,73,145,139)(12,64,146,130)(13,75,147,121)(14,66,148,132)(15,77,149,123)(16,68,150,134)(17,79,151,125)(18,70,152,136)(19,61,153,127)(20,72,154,138)(21,49,117,97)(22,60,118,88)(23,51,119,99)(24,42,120,90)(25,53,101,81)(26,44,102,92)(27,55,103,83)(28,46,104,94)(29,57,105,85)(30,48,106,96)(31,59,107,87)(32,50,108,98)(33,41,109,89)(34,52,110,100)(35,43,111,91)(36,54,112,82)(37,45,113,93)(38,56,114,84)(39,47,115,95)(40,58,116,86), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(41,154)(42,155)(43,156)(44,157)(45,158)(46,159)(47,160)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,118)(62,119)(63,120)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,11,85)(2,94,12,84)(3,93,13,83)(4,92,14,82)(5,91,15,81)(6,90,16,100)(7,89,17,99)(8,88,18,98)(9,87,19,97)(10,86,20,96)(21,61,31,71)(22,80,32,70)(23,79,33,69)(24,78,34,68)(25,77,35,67)(26,76,36,66)(27,75,37,65)(28,74,38,64)(29,73,39,63)(30,72,40,62)(41,151,51,141)(42,150,52,160)(43,149,53,159)(44,148,54,158)(45,147,55,157)(46,146,56,156)(47,145,57,155)(48,144,58,154)(49,143,59,153)(50,142,60,152)(101,123,111,133)(102,122,112,132)(103,121,113,131)(104,140,114,130)(105,139,115,129)(106,138,116,128)(107,137,117,127)(108,136,118,126)(109,135,119,125)(110,134,120,124), (1,63,155,129)(2,74,156,140)(3,65,157,131)(4,76,158,122)(5,67,159,133)(6,78,160,124)(7,69,141,135)(8,80,142,126)(9,71,143,137)(10,62,144,128)(11,73,145,139)(12,64,146,130)(13,75,147,121)(14,66,148,132)(15,77,149,123)(16,68,150,134)(17,79,151,125)(18,70,152,136)(19,61,153,127)(20,72,154,138)(21,49,117,97)(22,60,118,88)(23,51,119,99)(24,42,120,90)(25,53,101,81)(26,44,102,92)(27,55,103,83)(28,46,104,94)(29,57,105,85)(30,48,106,96)(31,59,107,87)(32,50,108,98)(33,41,109,89)(34,52,110,100)(35,43,111,91)(36,54,112,82)(37,45,113,93)(38,56,114,84)(39,47,115,95)(40,58,116,86), (1,90)(2,91)(3,92)(4,93)(5,94)(6,95)(7,96)(8,97)(9,98)(10,99)(11,100)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,121)(37,122)(38,123)(39,124)(40,125)(41,154)(42,155)(43,156)(44,157)(45,158)(46,159)(47,160)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,118)(62,119)(63,120)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,95,11,85),(2,94,12,84),(3,93,13,83),(4,92,14,82),(5,91,15,81),(6,90,16,100),(7,89,17,99),(8,88,18,98),(9,87,19,97),(10,86,20,96),(21,61,31,71),(22,80,32,70),(23,79,33,69),(24,78,34,68),(25,77,35,67),(26,76,36,66),(27,75,37,65),(28,74,38,64),(29,73,39,63),(30,72,40,62),(41,151,51,141),(42,150,52,160),(43,149,53,159),(44,148,54,158),(45,147,55,157),(46,146,56,156),(47,145,57,155),(48,144,58,154),(49,143,59,153),(50,142,60,152),(101,123,111,133),(102,122,112,132),(103,121,113,131),(104,140,114,130),(105,139,115,129),(106,138,116,128),(107,137,117,127),(108,136,118,126),(109,135,119,125),(110,134,120,124)], [(1,63,155,129),(2,74,156,140),(3,65,157,131),(4,76,158,122),(5,67,159,133),(6,78,160,124),(7,69,141,135),(8,80,142,126),(9,71,143,137),(10,62,144,128),(11,73,145,139),(12,64,146,130),(13,75,147,121),(14,66,148,132),(15,77,149,123),(16,68,150,134),(17,79,151,125),(18,70,152,136),(19,61,153,127),(20,72,154,138),(21,49,117,97),(22,60,118,88),(23,51,119,99),(24,42,120,90),(25,53,101,81),(26,44,102,92),(27,55,103,83),(28,46,104,94),(29,57,105,85),(30,48,106,96),(31,59,107,87),(32,50,108,98),(33,41,109,89),(34,52,110,100),(35,43,111,91),(36,54,112,82),(37,45,113,93),(38,56,114,84),(39,47,115,95),(40,58,116,86)], [(1,90),(2,91),(3,92),(4,93),(5,94),(6,95),(7,96),(8,97),(9,98),(10,99),(11,100),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,121),(37,122),(38,123),(39,124),(40,125),(41,154),(42,155),(43,156),(44,157),(45,158),(46,159),(47,160),(48,141),(49,142),(50,143),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,150),(58,151),(59,152),(60,153),(61,118),(62,119),(63,120),(64,101),(65,102),(66,103),(67,104),(68,105),(69,106),(70,107),(71,108),(72,109),(73,110),(74,111),(75,112),(76,113),(77,114),(78,115),(79,116),(80,117)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0022200
00241900
0000740
000010
,
4000000
0400000
009000
0073200
0000734
0000134
,
1400000
2400000
0072300
00213400
000010
000001
,
100000
2400000
0072300
00303400
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,22,24,0,0,0,0,2,19,0,0,0,0,0,0,7,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,7,0,0,0,0,0,32,0,0,0,0,0,0,7,1,0,0,0,0,34,34],[1,2,0,0,0,0,40,40,0,0,0,0,0,0,7,21,0,0,0,0,23,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,40,0,0,0,0,0,0,7,30,0,0,0,0,23,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G···4N4O5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222222224444444···445510···10101010101010101020···2020202020
size111144420202022224410···1020222···2444488884···48888

53 irreducible representations

dim1111111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102+ (1+4)D4×D5D46D10D5×C4○D4
kernelDic1020D4Dic54D4D10⋊D4Dic53Q8C42D20C4×C5⋊D4Dic5⋊D4C20⋊D4C5×C4⋊D4C2×C4○D20C2×D42D5Dic10C4⋊D4Dic5C22⋊C4C4⋊C4C22×C4C2×D4C10C4C2C2
# reps1221112311142442261444

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{20}D_4
% in TeX

G:=Group("Dic10:20D4");
// GroupNames label

G:=SmallGroup(320,1271);
// by ID

G=gap.SmallGroup(320,1271);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,477,232,184,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽