metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊C4.231D10, (C2×C20).286D4, C4.89(C4○D20), C10.Q16⋊26C2, C20.Q8⋊26C2, C10.50(C2×SD16), (C2×C10).33SD16, (C22×C4).97D10, C20.177(C4○D4), (C2×C20).324C23, C20.55D4.4C2, (C22×C10).189D4, C23.80(C5⋊D4), C5⋊4(C23.47D4), C22.8(D4.D5), C20.48D4.10C2, C2.7(C20.C23), C10.85(C8.C22), C4⋊Dic5.133C22, (C22×C20).139C22, (C2×Dic10).101C22, C10.61(C22.D4), C2.11(C23.23D10), (C2×C4⋊C4).9D5, (C10×C4⋊C4).8C2, C2.5(C2×D4.D5), (C2×C10).444(C2×D4), (C2×C4).34(C5⋊D4), (C5×C4⋊C4).262C22, (C2×C5⋊2C8).84C22, (C2×C4).424(C22×D5), C22.133(C2×C5⋊D4), SmallGroup(320,598)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊C4.231D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=b2c-1 >
Subgroups: 318 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2×C4⋊C4, C22⋊Q8, C5⋊2C8, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.47D4, C2×C5⋊2C8, C10.D4, C4⋊Dic5, C23.D5, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C22×C20, C22×C20, C20.Q8, C10.Q16, C20.55D4, C20.48D4, C10×C4⋊C4, C4⋊C4.231D10
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8.C22, C5⋊D4, C22×D5, C23.47D4, D4.D5, C4○D20, C2×C5⋊D4, C23.23D10, C2×D4.D5, C20.C23, C4⋊C4.231D10
(1 36 8 33)(2 37 9 34)(3 38 10 35)(4 39 6 31)(5 40 7 32)(11 26 16 21)(12 27 17 22)(13 28 18 23)(14 29 19 24)(15 30 20 25)(41 74 49 77)(42 75 50 78)(43 71 46 79)(44 72 47 80)(45 73 48 76)(51 61 56 66)(52 62 57 67)(53 63 58 68)(54 64 59 69)(55 65 60 70)(81 123 134 160)(82 124 135 151)(83 125 136 152)(84 126 137 153)(85 127 138 154)(86 128 139 155)(87 129 140 156)(88 130 131 157)(89 121 132 158)(90 122 133 159)(91 143 120 110)(92 144 111 101)(93 145 112 102)(94 146 113 103)(95 147 114 104)(96 148 115 105)(97 149 116 106)(98 150 117 107)(99 141 118 108)(100 142 119 109)
(1 51 13 43)(2 52 14 44)(3 53 15 45)(4 54 11 41)(5 55 12 42)(6 59 16 49)(7 60 17 50)(8 56 18 46)(9 57 19 47)(10 58 20 48)(21 74 31 64)(22 75 32 65)(23 71 33 61)(24 72 34 62)(25 73 35 63)(26 77 39 69)(27 78 40 70)(28 79 36 66)(29 80 37 67)(30 76 38 68)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 129 106 124)(102 130 107 125)(103 121 108 126)(104 122 109 127)(105 123 110 128)(111 140 116 135)(112 131 117 136)(113 132 118 137)(114 133 119 138)(115 134 120 139)(141 153 146 158)(142 154 147 159)(143 155 148 160)(144 156 149 151)(145 157 150 152)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104 18 142)(2 108 19 146)(3 102 20 150)(4 106 16 144)(5 110 17 148)(6 149 11 101)(7 143 12 105)(8 147 13 109)(9 141 14 103)(10 145 15 107)(21 92 39 116)(22 96 40 120)(23 100 36 114)(24 94 37 118)(25 98 38 112)(26 111 31 97)(27 115 32 91)(28 119 33 95)(29 113 34 99)(30 117 35 93)(41 140 59 82)(42 134 60 86)(43 138 56 90)(44 132 57 84)(45 136 58 88)(46 85 51 133)(47 89 52 137)(48 83 53 131)(49 87 54 135)(50 81 55 139)(61 122 79 154)(62 126 80 158)(63 130 76 152)(64 124 77 156)(65 128 78 160)(66 159 71 127)(67 153 72 121)(68 157 73 125)(69 151 74 129)(70 155 75 123)
G:=sub<Sym(160)| (1,36,8,33)(2,37,9,34)(3,38,10,35)(4,39,6,31)(5,40,7,32)(11,26,16,21)(12,27,17,22)(13,28,18,23)(14,29,19,24)(15,30,20,25)(41,74,49,77)(42,75,50,78)(43,71,46,79)(44,72,47,80)(45,73,48,76)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70)(81,123,134,160)(82,124,135,151)(83,125,136,152)(84,126,137,153)(85,127,138,154)(86,128,139,155)(87,129,140,156)(88,130,131,157)(89,121,132,158)(90,122,133,159)(91,143,120,110)(92,144,111,101)(93,145,112,102)(94,146,113,103)(95,147,114,104)(96,148,115,105)(97,149,116,106)(98,150,117,107)(99,141,118,108)(100,142,119,109), (1,51,13,43)(2,52,14,44)(3,53,15,45)(4,54,11,41)(5,55,12,42)(6,59,16,49)(7,60,17,50)(8,56,18,46)(9,57,19,47)(10,58,20,48)(21,74,31,64)(22,75,32,65)(23,71,33,61)(24,72,34,62)(25,73,35,63)(26,77,39,69)(27,78,40,70)(28,79,36,66)(29,80,37,67)(30,76,38,68)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,129,106,124)(102,130,107,125)(103,121,108,126)(104,122,109,127)(105,123,110,128)(111,140,116,135)(112,131,117,136)(113,132,118,137)(114,133,119,138)(115,134,120,139)(141,153,146,158)(142,154,147,159)(143,155,148,160)(144,156,149,151)(145,157,150,152), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,18,142)(2,108,19,146)(3,102,20,150)(4,106,16,144)(5,110,17,148)(6,149,11,101)(7,143,12,105)(8,147,13,109)(9,141,14,103)(10,145,15,107)(21,92,39,116)(22,96,40,120)(23,100,36,114)(24,94,37,118)(25,98,38,112)(26,111,31,97)(27,115,32,91)(28,119,33,95)(29,113,34,99)(30,117,35,93)(41,140,59,82)(42,134,60,86)(43,138,56,90)(44,132,57,84)(45,136,58,88)(46,85,51,133)(47,89,52,137)(48,83,53,131)(49,87,54,135)(50,81,55,139)(61,122,79,154)(62,126,80,158)(63,130,76,152)(64,124,77,156)(65,128,78,160)(66,159,71,127)(67,153,72,121)(68,157,73,125)(69,151,74,129)(70,155,75,123)>;
G:=Group( (1,36,8,33)(2,37,9,34)(3,38,10,35)(4,39,6,31)(5,40,7,32)(11,26,16,21)(12,27,17,22)(13,28,18,23)(14,29,19,24)(15,30,20,25)(41,74,49,77)(42,75,50,78)(43,71,46,79)(44,72,47,80)(45,73,48,76)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70)(81,123,134,160)(82,124,135,151)(83,125,136,152)(84,126,137,153)(85,127,138,154)(86,128,139,155)(87,129,140,156)(88,130,131,157)(89,121,132,158)(90,122,133,159)(91,143,120,110)(92,144,111,101)(93,145,112,102)(94,146,113,103)(95,147,114,104)(96,148,115,105)(97,149,116,106)(98,150,117,107)(99,141,118,108)(100,142,119,109), (1,51,13,43)(2,52,14,44)(3,53,15,45)(4,54,11,41)(5,55,12,42)(6,59,16,49)(7,60,17,50)(8,56,18,46)(9,57,19,47)(10,58,20,48)(21,74,31,64)(22,75,32,65)(23,71,33,61)(24,72,34,62)(25,73,35,63)(26,77,39,69)(27,78,40,70)(28,79,36,66)(29,80,37,67)(30,76,38,68)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,129,106,124)(102,130,107,125)(103,121,108,126)(104,122,109,127)(105,123,110,128)(111,140,116,135)(112,131,117,136)(113,132,118,137)(114,133,119,138)(115,134,120,139)(141,153,146,158)(142,154,147,159)(143,155,148,160)(144,156,149,151)(145,157,150,152), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,18,142)(2,108,19,146)(3,102,20,150)(4,106,16,144)(5,110,17,148)(6,149,11,101)(7,143,12,105)(8,147,13,109)(9,141,14,103)(10,145,15,107)(21,92,39,116)(22,96,40,120)(23,100,36,114)(24,94,37,118)(25,98,38,112)(26,111,31,97)(27,115,32,91)(28,119,33,95)(29,113,34,99)(30,117,35,93)(41,140,59,82)(42,134,60,86)(43,138,56,90)(44,132,57,84)(45,136,58,88)(46,85,51,133)(47,89,52,137)(48,83,53,131)(49,87,54,135)(50,81,55,139)(61,122,79,154)(62,126,80,158)(63,130,76,152)(64,124,77,156)(65,128,78,160)(66,159,71,127)(67,153,72,121)(68,157,73,125)(69,151,74,129)(70,155,75,123) );
G=PermutationGroup([[(1,36,8,33),(2,37,9,34),(3,38,10,35),(4,39,6,31),(5,40,7,32),(11,26,16,21),(12,27,17,22),(13,28,18,23),(14,29,19,24),(15,30,20,25),(41,74,49,77),(42,75,50,78),(43,71,46,79),(44,72,47,80),(45,73,48,76),(51,61,56,66),(52,62,57,67),(53,63,58,68),(54,64,59,69),(55,65,60,70),(81,123,134,160),(82,124,135,151),(83,125,136,152),(84,126,137,153),(85,127,138,154),(86,128,139,155),(87,129,140,156),(88,130,131,157),(89,121,132,158),(90,122,133,159),(91,143,120,110),(92,144,111,101),(93,145,112,102),(94,146,113,103),(95,147,114,104),(96,148,115,105),(97,149,116,106),(98,150,117,107),(99,141,118,108),(100,142,119,109)], [(1,51,13,43),(2,52,14,44),(3,53,15,45),(4,54,11,41),(5,55,12,42),(6,59,16,49),(7,60,17,50),(8,56,18,46),(9,57,19,47),(10,58,20,48),(21,74,31,64),(22,75,32,65),(23,71,33,61),(24,72,34,62),(25,73,35,63),(26,77,39,69),(27,78,40,70),(28,79,36,66),(29,80,37,67),(30,76,38,68),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,129,106,124),(102,130,107,125),(103,121,108,126),(104,122,109,127),(105,123,110,128),(111,140,116,135),(112,131,117,136),(113,132,118,137),(114,133,119,138),(115,134,120,139),(141,153,146,158),(142,154,147,159),(143,155,148,160),(144,156,149,151),(145,157,150,152)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104,18,142),(2,108,19,146),(3,102,20,150),(4,106,16,144),(5,110,17,148),(6,149,11,101),(7,143,12,105),(8,147,13,109),(9,141,14,103),(10,145,15,107),(21,92,39,116),(22,96,40,120),(23,100,36,114),(24,94,37,118),(25,98,38,112),(26,111,31,97),(27,115,32,91),(28,119,33,95),(29,113,34,99),(30,117,35,93),(41,140,59,82),(42,134,60,86),(43,138,56,90),(44,132,57,84),(45,136,58,88),(46,85,51,133),(47,89,52,137),(48,83,53,131),(49,87,54,135),(50,81,55,139),(61,122,79,154),(62,126,80,158),(63,130,76,152),(64,124,77,156),(65,128,78,160),(66,159,71,127),(67,153,72,121),(68,157,73,125),(69,151,74,129),(70,155,75,123)]])
59 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10N | 20A | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 40 | 40 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | ··· | 4 |
59 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | - | - | ||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | C4○D4 | SD16 | D10 | D10 | C5⋊D4 | C5⋊D4 | C4○D20 | C8.C22 | D4.D5 | C20.C23 |
| kernel | C4⋊C4.231D10 | C20.Q8 | C10.Q16 | C20.55D4 | C20.48D4 | C10×C4⋊C4 | C2×C20 | C22×C10 | C2×C4⋊C4 | C20 | C2×C10 | C4⋊C4 | C22×C4 | C2×C4 | C23 | C4 | C10 | C22 | C2 |
| # reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 4 | 4 | 16 | 1 | 4 | 4 |
Matrix representation of C4⋊C4.231D10 ►in GL6(𝔽41)
| 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 17 |
| 0 | 0 | 0 | 0 | 24 | 40 |
| 9 | 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 40 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 17 | 1 |
| 0 | 0 | 0 | 0 | 40 | 24 |
| 1 | 14 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 25 | 0 | 0 | 0 |
| 0 | 0 | 33 | 23 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 27 | 4 | 0 | 0 | 0 | 0 |
| 2 | 14 | 0 | 0 | 0 | 0 |
| 0 | 0 | 3 | 11 | 0 | 0 |
| 0 | 0 | 3 | 38 | 0 | 0 |
| 0 | 0 | 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 0 | 11 | 32 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,24,0,0,0,0,17,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,17,40,0,0,0,0,1,24],[1,0,0,0,0,0,14,40,0,0,0,0,0,0,25,33,0,0,0,0,0,23,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,2,0,0,0,0,4,14,0,0,0,0,0,0,3,3,0,0,0,0,11,38,0,0,0,0,0,0,9,11,0,0,0,0,0,32] >;
C4⋊C4.231D10 in GAP, Magma, Sage, TeX
C_4\rtimes C_4._{231}D_{10} % in TeX
G:=Group("C4:C4.231D10"); // GroupNames label
G:=SmallGroup(320,598);
// by ID
G=gap.SmallGroup(320,598);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,100,1123,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=b^2*c^-1>;
// generators/relations