Copied to
clipboard

G = C4⋊C4.231D10order 320 = 26·5

9th non-split extension by C4⋊C4 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.231D10, (C2×C20).286D4, C4.89(C4○D20), C10.Q1626C2, C20.Q826C2, C10.50(C2×SD16), (C2×C10).33SD16, (C22×C4).97D10, C20.177(C4○D4), (C2×C20).324C23, C20.55D4.4C2, (C22×C10).189D4, C23.80(C5⋊D4), C54(C23.47D4), C22.8(D4.D5), C20.48D4.10C2, C2.7(C20.C23), C10.85(C8.C22), C4⋊Dic5.133C22, (C22×C20).139C22, (C2×Dic10).101C22, C10.61(C22.D4), C2.11(C23.23D10), (C2×C4⋊C4).9D5, (C10×C4⋊C4).8C2, C2.5(C2×D4.D5), (C2×C10).444(C2×D4), (C2×C4).34(C5⋊D4), (C5×C4⋊C4).262C22, (C2×C52C8).84C22, (C2×C4).424(C22×D5), C22.133(C2×C5⋊D4), SmallGroup(320,598)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C4⋊C4.231D10
C1C5C10C20C2×C20C2×Dic10C20.48D4 — C4⋊C4.231D10
C5C10C2×C20 — C4⋊C4.231D10
C1C22C22×C4C2×C4⋊C4

Generators and relations for C4⋊C4.231D10
 G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=b2c-1 >

Subgroups: 318 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2×C4⋊C4, C22⋊Q8, C52C8, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.47D4, C2×C52C8, C10.D4, C4⋊Dic5, C23.D5, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C22×C20, C22×C20, C20.Q8, C10.Q16, C20.55D4, C20.48D4, C10×C4⋊C4, C4⋊C4.231D10
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8.C22, C5⋊D4, C22×D5, C23.47D4, D4.D5, C4○D20, C2×C5⋊D4, C23.23D10, C2×D4.D5, C20.C23, C4⋊C4.231D10

Smallest permutation representation of C4⋊C4.231D10
On 160 points
Generators in S160
(1 36 8 33)(2 37 9 34)(3 38 10 35)(4 39 6 31)(5 40 7 32)(11 26 16 21)(12 27 17 22)(13 28 18 23)(14 29 19 24)(15 30 20 25)(41 74 49 77)(42 75 50 78)(43 71 46 79)(44 72 47 80)(45 73 48 76)(51 61 56 66)(52 62 57 67)(53 63 58 68)(54 64 59 69)(55 65 60 70)(81 123 134 160)(82 124 135 151)(83 125 136 152)(84 126 137 153)(85 127 138 154)(86 128 139 155)(87 129 140 156)(88 130 131 157)(89 121 132 158)(90 122 133 159)(91 143 120 110)(92 144 111 101)(93 145 112 102)(94 146 113 103)(95 147 114 104)(96 148 115 105)(97 149 116 106)(98 150 117 107)(99 141 118 108)(100 142 119 109)
(1 51 13 43)(2 52 14 44)(3 53 15 45)(4 54 11 41)(5 55 12 42)(6 59 16 49)(7 60 17 50)(8 56 18 46)(9 57 19 47)(10 58 20 48)(21 74 31 64)(22 75 32 65)(23 71 33 61)(24 72 34 62)(25 73 35 63)(26 77 39 69)(27 78 40 70)(28 79 36 66)(29 80 37 67)(30 76 38 68)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 129 106 124)(102 130 107 125)(103 121 108 126)(104 122 109 127)(105 123 110 128)(111 140 116 135)(112 131 117 136)(113 132 118 137)(114 133 119 138)(115 134 120 139)(141 153 146 158)(142 154 147 159)(143 155 148 160)(144 156 149 151)(145 157 150 152)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104 18 142)(2 108 19 146)(3 102 20 150)(4 106 16 144)(5 110 17 148)(6 149 11 101)(7 143 12 105)(8 147 13 109)(9 141 14 103)(10 145 15 107)(21 92 39 116)(22 96 40 120)(23 100 36 114)(24 94 37 118)(25 98 38 112)(26 111 31 97)(27 115 32 91)(28 119 33 95)(29 113 34 99)(30 117 35 93)(41 140 59 82)(42 134 60 86)(43 138 56 90)(44 132 57 84)(45 136 58 88)(46 85 51 133)(47 89 52 137)(48 83 53 131)(49 87 54 135)(50 81 55 139)(61 122 79 154)(62 126 80 158)(63 130 76 152)(64 124 77 156)(65 128 78 160)(66 159 71 127)(67 153 72 121)(68 157 73 125)(69 151 74 129)(70 155 75 123)

G:=sub<Sym(160)| (1,36,8,33)(2,37,9,34)(3,38,10,35)(4,39,6,31)(5,40,7,32)(11,26,16,21)(12,27,17,22)(13,28,18,23)(14,29,19,24)(15,30,20,25)(41,74,49,77)(42,75,50,78)(43,71,46,79)(44,72,47,80)(45,73,48,76)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70)(81,123,134,160)(82,124,135,151)(83,125,136,152)(84,126,137,153)(85,127,138,154)(86,128,139,155)(87,129,140,156)(88,130,131,157)(89,121,132,158)(90,122,133,159)(91,143,120,110)(92,144,111,101)(93,145,112,102)(94,146,113,103)(95,147,114,104)(96,148,115,105)(97,149,116,106)(98,150,117,107)(99,141,118,108)(100,142,119,109), (1,51,13,43)(2,52,14,44)(3,53,15,45)(4,54,11,41)(5,55,12,42)(6,59,16,49)(7,60,17,50)(8,56,18,46)(9,57,19,47)(10,58,20,48)(21,74,31,64)(22,75,32,65)(23,71,33,61)(24,72,34,62)(25,73,35,63)(26,77,39,69)(27,78,40,70)(28,79,36,66)(29,80,37,67)(30,76,38,68)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,129,106,124)(102,130,107,125)(103,121,108,126)(104,122,109,127)(105,123,110,128)(111,140,116,135)(112,131,117,136)(113,132,118,137)(114,133,119,138)(115,134,120,139)(141,153,146,158)(142,154,147,159)(143,155,148,160)(144,156,149,151)(145,157,150,152), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,18,142)(2,108,19,146)(3,102,20,150)(4,106,16,144)(5,110,17,148)(6,149,11,101)(7,143,12,105)(8,147,13,109)(9,141,14,103)(10,145,15,107)(21,92,39,116)(22,96,40,120)(23,100,36,114)(24,94,37,118)(25,98,38,112)(26,111,31,97)(27,115,32,91)(28,119,33,95)(29,113,34,99)(30,117,35,93)(41,140,59,82)(42,134,60,86)(43,138,56,90)(44,132,57,84)(45,136,58,88)(46,85,51,133)(47,89,52,137)(48,83,53,131)(49,87,54,135)(50,81,55,139)(61,122,79,154)(62,126,80,158)(63,130,76,152)(64,124,77,156)(65,128,78,160)(66,159,71,127)(67,153,72,121)(68,157,73,125)(69,151,74,129)(70,155,75,123)>;

G:=Group( (1,36,8,33)(2,37,9,34)(3,38,10,35)(4,39,6,31)(5,40,7,32)(11,26,16,21)(12,27,17,22)(13,28,18,23)(14,29,19,24)(15,30,20,25)(41,74,49,77)(42,75,50,78)(43,71,46,79)(44,72,47,80)(45,73,48,76)(51,61,56,66)(52,62,57,67)(53,63,58,68)(54,64,59,69)(55,65,60,70)(81,123,134,160)(82,124,135,151)(83,125,136,152)(84,126,137,153)(85,127,138,154)(86,128,139,155)(87,129,140,156)(88,130,131,157)(89,121,132,158)(90,122,133,159)(91,143,120,110)(92,144,111,101)(93,145,112,102)(94,146,113,103)(95,147,114,104)(96,148,115,105)(97,149,116,106)(98,150,117,107)(99,141,118,108)(100,142,119,109), (1,51,13,43)(2,52,14,44)(3,53,15,45)(4,54,11,41)(5,55,12,42)(6,59,16,49)(7,60,17,50)(8,56,18,46)(9,57,19,47)(10,58,20,48)(21,74,31,64)(22,75,32,65)(23,71,33,61)(24,72,34,62)(25,73,35,63)(26,77,39,69)(27,78,40,70)(28,79,36,66)(29,80,37,67)(30,76,38,68)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,129,106,124)(102,130,107,125)(103,121,108,126)(104,122,109,127)(105,123,110,128)(111,140,116,135)(112,131,117,136)(113,132,118,137)(114,133,119,138)(115,134,120,139)(141,153,146,158)(142,154,147,159)(143,155,148,160)(144,156,149,151)(145,157,150,152), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104,18,142)(2,108,19,146)(3,102,20,150)(4,106,16,144)(5,110,17,148)(6,149,11,101)(7,143,12,105)(8,147,13,109)(9,141,14,103)(10,145,15,107)(21,92,39,116)(22,96,40,120)(23,100,36,114)(24,94,37,118)(25,98,38,112)(26,111,31,97)(27,115,32,91)(28,119,33,95)(29,113,34,99)(30,117,35,93)(41,140,59,82)(42,134,60,86)(43,138,56,90)(44,132,57,84)(45,136,58,88)(46,85,51,133)(47,89,52,137)(48,83,53,131)(49,87,54,135)(50,81,55,139)(61,122,79,154)(62,126,80,158)(63,130,76,152)(64,124,77,156)(65,128,78,160)(66,159,71,127)(67,153,72,121)(68,157,73,125)(69,151,74,129)(70,155,75,123) );

G=PermutationGroup([[(1,36,8,33),(2,37,9,34),(3,38,10,35),(4,39,6,31),(5,40,7,32),(11,26,16,21),(12,27,17,22),(13,28,18,23),(14,29,19,24),(15,30,20,25),(41,74,49,77),(42,75,50,78),(43,71,46,79),(44,72,47,80),(45,73,48,76),(51,61,56,66),(52,62,57,67),(53,63,58,68),(54,64,59,69),(55,65,60,70),(81,123,134,160),(82,124,135,151),(83,125,136,152),(84,126,137,153),(85,127,138,154),(86,128,139,155),(87,129,140,156),(88,130,131,157),(89,121,132,158),(90,122,133,159),(91,143,120,110),(92,144,111,101),(93,145,112,102),(94,146,113,103),(95,147,114,104),(96,148,115,105),(97,149,116,106),(98,150,117,107),(99,141,118,108),(100,142,119,109)], [(1,51,13,43),(2,52,14,44),(3,53,15,45),(4,54,11,41),(5,55,12,42),(6,59,16,49),(7,60,17,50),(8,56,18,46),(9,57,19,47),(10,58,20,48),(21,74,31,64),(22,75,32,65),(23,71,33,61),(24,72,34,62),(25,73,35,63),(26,77,39,69),(27,78,40,70),(28,79,36,66),(29,80,37,67),(30,76,38,68),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,129,106,124),(102,130,107,125),(103,121,108,126),(104,122,109,127),(105,123,110,128),(111,140,116,135),(112,131,117,136),(113,132,118,137),(114,133,119,138),(115,134,120,139),(141,153,146,158),(142,154,147,159),(143,155,148,160),(144,156,149,151),(145,157,150,152)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104,18,142),(2,108,19,146),(3,102,20,150),(4,106,16,144),(5,110,17,148),(6,149,11,101),(7,143,12,105),(8,147,13,109),(9,141,14,103),(10,145,15,107),(21,92,39,116),(22,96,40,120),(23,100,36,114),(24,94,37,118),(25,98,38,112),(26,111,31,97),(27,115,32,91),(28,119,33,95),(29,113,34,99),(30,117,35,93),(41,140,59,82),(42,134,60,86),(43,138,56,90),(44,132,57,84),(45,136,58,88),(46,85,51,133),(47,89,52,137),(48,83,53,131),(49,87,54,135),(50,81,55,139),(61,122,79,154),(62,126,80,158),(63,130,76,152),(64,124,77,156),(65,128,78,160),(66,159,71,127),(67,153,72,121),(68,157,73,125),(69,151,74,129),(70,155,75,123)]])

59 conjugacy classes

class 1 2A2B2C2D2E4A4B4C···4G4H4I5A5B8A8B8C8D10A···10N20A···20X
order122222444···44455888810···1020···20
size111122224···4404022202020202···24···4

59 irreducible representations

dim1111112222222222444
type+++++++++++--
imageC1C2C2C2C2C2D4D4D5C4○D4SD16D10D10C5⋊D4C5⋊D4C4○D20C8.C22D4.D5C20.C23
kernelC4⋊C4.231D10C20.Q8C10.Q16C20.55D4C20.48D4C10×C4⋊C4C2×C20C22×C10C2×C4⋊C4C20C2×C10C4⋊C4C22×C4C2×C4C23C4C10C22C2
# reps12211111244424416144

Matrix representation of C4⋊C4.231D10 in GL6(𝔽41)

100000
010000
001000
000100
0000117
00002440
,
900000
090000
0040000
0004000
0000171
00004024
,
1140000
0400000
0025000
00332300
000010
000001
,
2740000
2140000
0031100
0033800
000090
00001132

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,24,0,0,0,0,17,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,17,40,0,0,0,0,1,24],[1,0,0,0,0,0,14,40,0,0,0,0,0,0,25,33,0,0,0,0,0,23,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[27,2,0,0,0,0,4,14,0,0,0,0,0,0,3,3,0,0,0,0,11,38,0,0,0,0,0,0,9,11,0,0,0,0,0,32] >;

C4⋊C4.231D10 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{231}D_{10}
% in TeX

G:=Group("C4:C4.231D10");
// GroupNames label

G:=SmallGroup(320,598);
// by ID

G=gap.SmallGroup(320,598);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,253,254,100,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽