Copied to
clipboard

?

G = D102M4(2)  order 320 = 26·5

2nd semidirect product of D10 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D102M4(2), C5⋊C86D4, C4⋊C4.5F5, C53(C89D4), C10.9(C4×D4), C2.11(D4×F5), (C2×D20).8C4, D10⋊C89C2, C2.4(Q8.F5), Dic5⋊C82C2, D10⋊C4.9C4, C10.20(C8○D4), Dic5.70(C2×D4), D208C4.17C2, C10.C423C2, C10.13(C2×M4(2)), Dic5.55(C4○D4), C22.76(C22×F5), C2.13(D5⋊M4(2)), (C4×Dic5).68C22, (C2×Dic5).331C23, (C5×C4⋊C4).8C4, (C2×D5⋊C8)⋊11C2, (C2×C4.F5)⋊11C2, (C2×C4).25(C2×F5), (C2×C20).22(C2×C4), (C2×C5⋊C8).28C22, (C2×C4×D5).290C22, (C2×C10).42(C22×C4), (C2×Dic5).57(C2×C4), (C22×D5).48(C2×C4), SmallGroup(320,1042)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D102M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×D5⋊C8 — D102M4(2)
C5C2×C10 — D102M4(2)

Subgroups: 474 in 124 conjugacy classes, 46 normal (42 characteristic)
C1, C2 [×3], C2 [×3], C4 [×6], C22, C22 [×7], C5, C8 [×5], C2×C4 [×3], C2×C4 [×6], D4 [×2], C23 [×2], D5 [×3], C10 [×3], C42, C22⋊C4 [×2], C4⋊C4, C2×C8 [×6], M4(2) [×2], C22×C4 [×2], C2×D4, Dic5 [×2], Dic5, C20 [×3], D10 [×2], D10 [×5], C2×C10, C8⋊C4, C22⋊C8 [×2], C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8 [×2], C5⋊C8 [×3], C4×D5 [×4], D20 [×2], C2×Dic5 [×2], C2×C20 [×3], C22×D5 [×2], C89D4, C4×Dic5, D10⋊C4 [×2], C5×C4⋊C4, D5⋊C8 [×2], C4.F5 [×2], C2×C5⋊C8 [×4], C2×C4×D5 [×2], C2×D20, C10.C42, D10⋊C8 [×2], Dic5⋊C8, D208C4, C2×D5⋊C8, C2×C4.F5, D102M4(2)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×2], C23, M4(2) [×2], C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5 [×3], C89D4, C22×F5, D5⋊M4(2), D4×F5, Q8.F5, D102M4(2)

Generators and relations
 G = < a,b,c,d | a10=b2=c8=d2=1, bab=dad=a-1, cac-1=a7, cbc-1=ab, dbd=a3b, dcd=c5 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 79)(2 78)(3 77)(4 76)(5 75)(6 74)(7 73)(8 72)(9 71)(10 80)(11 107)(12 106)(13 105)(14 104)(15 103)(16 102)(17 101)(18 110)(19 109)(20 108)(21 85)(22 84)(23 83)(24 82)(25 81)(26 90)(27 89)(28 88)(29 87)(30 86)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 63)(38 62)(39 61)(40 70)(41 52)(42 51)(43 60)(44 59)(45 58)(46 57)(47 56)(48 55)(49 54)(50 53)(91 158)(92 157)(93 156)(94 155)(95 154)(96 153)(97 152)(98 151)(99 160)(100 159)(111 143)(112 142)(113 141)(114 150)(115 149)(116 148)(117 147)(118 146)(119 145)(120 144)(121 138)(122 137)(123 136)(124 135)(125 134)(126 133)(127 132)(128 131)(129 140)(130 139)
(1 120 40 105 21 130 44 100)(2 113 39 102 22 123 43 97)(3 116 38 109 23 126 42 94)(4 119 37 106 24 129 41 91)(5 112 36 103 25 122 50 98)(6 115 35 110 26 125 49 95)(7 118 34 107 27 128 48 92)(8 111 33 104 28 121 47 99)(9 114 32 101 29 124 46 96)(10 117 31 108 30 127 45 93)(11 82 133 54 157 76 148 65)(12 85 132 51 158 79 147 62)(13 88 131 58 159 72 146 69)(14 81 140 55 160 75 145 66)(15 84 139 52 151 78 144 63)(16 87 138 59 152 71 143 70)(17 90 137 56 153 74 142 67)(18 83 136 53 154 77 141 64)(19 86 135 60 155 80 150 61)(20 89 134 57 156 73 149 68)
(2 10)(3 9)(4 8)(5 7)(11 158)(12 157)(13 156)(14 155)(15 154)(16 153)(17 152)(18 151)(19 160)(20 159)(22 30)(23 29)(24 28)(25 27)(31 39)(32 38)(33 37)(34 36)(41 47)(42 46)(43 45)(48 50)(51 54)(52 53)(55 60)(56 59)(57 58)(61 66)(62 65)(63 64)(67 70)(68 69)(71 74)(72 73)(75 80)(76 79)(77 78)(81 86)(82 85)(83 84)(87 90)(88 89)(91 104)(92 103)(93 102)(94 101)(95 110)(96 109)(97 108)(98 107)(99 106)(100 105)(111 129)(112 128)(113 127)(114 126)(115 125)(116 124)(117 123)(118 122)(119 121)(120 130)(131 149)(132 148)(133 147)(134 146)(135 145)(136 144)(137 143)(138 142)(139 141)(140 150)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,80)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,52)(42,51)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,143)(112,142)(113,141)(114,150)(115,149)(116,148)(117,147)(118,146)(119,145)(120,144)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,140)(130,139), (1,120,40,105,21,130,44,100)(2,113,39,102,22,123,43,97)(3,116,38,109,23,126,42,94)(4,119,37,106,24,129,41,91)(5,112,36,103,25,122,50,98)(6,115,35,110,26,125,49,95)(7,118,34,107,27,128,48,92)(8,111,33,104,28,121,47,99)(9,114,32,101,29,124,46,96)(10,117,31,108,30,127,45,93)(11,82,133,54,157,76,148,65)(12,85,132,51,158,79,147,62)(13,88,131,58,159,72,146,69)(14,81,140,55,160,75,145,66)(15,84,139,52,151,78,144,63)(16,87,138,59,152,71,143,70)(17,90,137,56,153,74,142,67)(18,83,136,53,154,77,141,64)(19,86,135,60,155,80,150,61)(20,89,134,57,156,73,149,68), (2,10)(3,9)(4,8)(5,7)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,160)(20,159)(22,30)(23,29)(24,28)(25,27)(31,39)(32,38)(33,37)(34,36)(41,47)(42,46)(43,45)(48,50)(51,54)(52,53)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,70)(68,69)(71,74)(72,73)(75,80)(76,79)(77,78)(81,86)(82,85)(83,84)(87,90)(88,89)(91,104)(92,103)(93,102)(94,101)(95,110)(96,109)(97,108)(98,107)(99,106)(100,105)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(120,130)(131,149)(132,148)(133,147)(134,146)(135,145)(136,144)(137,143)(138,142)(139,141)(140,150)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,79)(2,78)(3,77)(4,76)(5,75)(6,74)(7,73)(8,72)(9,71)(10,80)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,52)(42,51)(43,60)(44,59)(45,58)(46,57)(47,56)(48,55)(49,54)(50,53)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,143)(112,142)(113,141)(114,150)(115,149)(116,148)(117,147)(118,146)(119,145)(120,144)(121,138)(122,137)(123,136)(124,135)(125,134)(126,133)(127,132)(128,131)(129,140)(130,139), (1,120,40,105,21,130,44,100)(2,113,39,102,22,123,43,97)(3,116,38,109,23,126,42,94)(4,119,37,106,24,129,41,91)(5,112,36,103,25,122,50,98)(6,115,35,110,26,125,49,95)(7,118,34,107,27,128,48,92)(8,111,33,104,28,121,47,99)(9,114,32,101,29,124,46,96)(10,117,31,108,30,127,45,93)(11,82,133,54,157,76,148,65)(12,85,132,51,158,79,147,62)(13,88,131,58,159,72,146,69)(14,81,140,55,160,75,145,66)(15,84,139,52,151,78,144,63)(16,87,138,59,152,71,143,70)(17,90,137,56,153,74,142,67)(18,83,136,53,154,77,141,64)(19,86,135,60,155,80,150,61)(20,89,134,57,156,73,149,68), (2,10)(3,9)(4,8)(5,7)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,160)(20,159)(22,30)(23,29)(24,28)(25,27)(31,39)(32,38)(33,37)(34,36)(41,47)(42,46)(43,45)(48,50)(51,54)(52,53)(55,60)(56,59)(57,58)(61,66)(62,65)(63,64)(67,70)(68,69)(71,74)(72,73)(75,80)(76,79)(77,78)(81,86)(82,85)(83,84)(87,90)(88,89)(91,104)(92,103)(93,102)(94,101)(95,110)(96,109)(97,108)(98,107)(99,106)(100,105)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)(120,130)(131,149)(132,148)(133,147)(134,146)(135,145)(136,144)(137,143)(138,142)(139,141)(140,150) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,79),(2,78),(3,77),(4,76),(5,75),(6,74),(7,73),(8,72),(9,71),(10,80),(11,107),(12,106),(13,105),(14,104),(15,103),(16,102),(17,101),(18,110),(19,109),(20,108),(21,85),(22,84),(23,83),(24,82),(25,81),(26,90),(27,89),(28,88),(29,87),(30,86),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,63),(38,62),(39,61),(40,70),(41,52),(42,51),(43,60),(44,59),(45,58),(46,57),(47,56),(48,55),(49,54),(50,53),(91,158),(92,157),(93,156),(94,155),(95,154),(96,153),(97,152),(98,151),(99,160),(100,159),(111,143),(112,142),(113,141),(114,150),(115,149),(116,148),(117,147),(118,146),(119,145),(120,144),(121,138),(122,137),(123,136),(124,135),(125,134),(126,133),(127,132),(128,131),(129,140),(130,139)], [(1,120,40,105,21,130,44,100),(2,113,39,102,22,123,43,97),(3,116,38,109,23,126,42,94),(4,119,37,106,24,129,41,91),(5,112,36,103,25,122,50,98),(6,115,35,110,26,125,49,95),(7,118,34,107,27,128,48,92),(8,111,33,104,28,121,47,99),(9,114,32,101,29,124,46,96),(10,117,31,108,30,127,45,93),(11,82,133,54,157,76,148,65),(12,85,132,51,158,79,147,62),(13,88,131,58,159,72,146,69),(14,81,140,55,160,75,145,66),(15,84,139,52,151,78,144,63),(16,87,138,59,152,71,143,70),(17,90,137,56,153,74,142,67),(18,83,136,53,154,77,141,64),(19,86,135,60,155,80,150,61),(20,89,134,57,156,73,149,68)], [(2,10),(3,9),(4,8),(5,7),(11,158),(12,157),(13,156),(14,155),(15,154),(16,153),(17,152),(18,151),(19,160),(20,159),(22,30),(23,29),(24,28),(25,27),(31,39),(32,38),(33,37),(34,36),(41,47),(42,46),(43,45),(48,50),(51,54),(52,53),(55,60),(56,59),(57,58),(61,66),(62,65),(63,64),(67,70),(68,69),(71,74),(72,73),(75,80),(76,79),(77,78),(81,86),(82,85),(83,84),(87,90),(88,89),(91,104),(92,103),(93,102),(94,101),(95,110),(96,109),(97,108),(98,107),(99,106),(100,105),(111,129),(112,128),(113,127),(114,126),(115,125),(116,124),(117,123),(118,122),(119,121),(120,130),(131,149),(132,148),(133,147),(134,146),(135,145),(136,144),(137,143),(138,142),(139,141),(140,150)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
0000401
0000400
0010400
0001400
,
0400000
4000000
003822193
00190223
00383220
00031922
,
4000000
010000
00191111
0012181220
0021292329
0030303240
,
100000
0400000
000001
000010
000100
001000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,38,19,38,0,0,0,22,0,3,3,0,0,19,22,22,19,0,0,3,3,0,22],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,21,30,0,0,9,18,29,30,0,0,11,12,23,32,0,0,11,20,29,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C20A···20F
order122222244444444458···8888810101020···20
size11111010202244555520410···10202020204448···8

38 irreducible representations

dim1111111111222244488
type++++++++++++
imageC1C2C2C2C2C2C2C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5D5⋊M4(2)D4×F5Q8.F5
kernelD102M4(2)C10.C42D10⋊C8Dic5⋊C8D208C4C2×D5⋊C8C2×C4.F5D10⋊C4C5×C4⋊C4C2×D20C5⋊C8Dic5D10C10C4⋊C4C2×C4C2C2C2
# reps1121111422224413411

In GAP, Magma, Sage, TeX

D_{10}\rtimes_2M_{4(2)}
% in TeX

G:=Group("D10:2M4(2)");
// GroupNames label

G:=SmallGroup(320,1042);
// by ID

G=gap.SmallGroup(320,1042);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^7,c*b*c^-1=a*b,d*b*d=a^3*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽