Copied to
clipboard

?

G = D209Q8order 320 = 26·5

7th semidirect product of D20 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D209Q8, C42.175D10, C10.832+ (1+4), C4⋊Q813D5, C4.19(Q8×D5), C58(D43Q8), C20.56(C2×Q8), C4⋊C4.220D10, (C4×D20).27C2, (C2×Q8).87D10, D10.24(C2×Q8), D102Q844C2, D103Q837C2, (C4×Dic10)⋊53C2, C4.Dic1044C2, D208C4.14C2, C20.137(C4○D4), C10.50(C22×Q8), (C4×C20).215C22, (C2×C10).274C24, (C2×C20).107C23, C4.40(Q82D5), C2.87(D46D10), (C2×D20).281C22, C4⋊Dic5.253C22, (Q8×C10).141C22, C22.295(C23×D5), (C2×Dic5).145C23, (C4×Dic5).171C22, C10.D4.62C22, (C22×D5).245C23, D10⋊C4.153C22, (C2×Dic10).311C22, (D5×C4⋊C4)⋊45C2, C2.33(C2×Q8×D5), (C5×C4⋊Q8)⋊16C2, C10.122(C2×C4○D4), C2.30(C2×Q82D5), (C2×C4×D5).156C22, (C5×C4⋊C4).217C22, (C2×C4).220(C22×D5), SmallGroup(320,1402)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D209Q8
C1C5C10C2×C10C22×D5C2×D20C4×D20 — D209Q8
C5C2×C10 — D209Q8

Subgroups: 774 in 228 conjugacy classes, 107 normal (27 characteristic)
C1, C2 [×3], C2 [×4], C4 [×4], C4 [×11], C22, C22 [×8], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×14], D4 [×4], Q8 [×4], C23 [×2], D5 [×4], C10 [×3], C42, C42 [×2], C22⋊C4 [×6], C4⋊C4 [×4], C4⋊C4 [×12], C22×C4 [×6], C2×D4, C2×Q8 [×2], C2×Q8, Dic5 [×6], C20 [×4], C20 [×5], D10 [×4], D10 [×4], C2×C10, C2×C4⋊C4 [×2], C4×D4 [×3], C4×Q8, C22⋊Q8 [×6], C42.C2 [×2], C4⋊Q8, Dic10 [×2], C4×D5 [×8], D20 [×4], C2×Dic5 [×6], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5 [×2], D43Q8, C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×4], D10⋊C4 [×6], C4×C20, C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×6], C2×D20, Q8×C10 [×2], C4×Dic10, C4×D20, C4.Dic10 [×2], D5×C4⋊C4 [×2], D208C4 [×2], D102Q8 [×2], D103Q8 [×4], C5×C4⋊Q8, D209Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×2], C24, D10 [×7], C22×Q8, C2×C4○D4, 2+ (1+4), C22×D5 [×7], D43Q8, Q8×D5 [×2], Q82D5 [×2], C23×D5, D46D10, C2×Q8×D5, C2×Q82D5, D209Q8

Generators and relations
 G = < a,b,c,d | a20=b2=c4=1, d2=c2, bab=a-1, cac-1=a11, ad=da, cbc-1=dbd-1=a10b, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(36 40)(37 39)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(58 60)(61 67)(62 66)(63 65)(68 80)(69 79)(70 78)(71 77)(72 76)(73 75)(81 83)(84 100)(85 99)(86 98)(87 97)(88 96)(89 95)(90 94)(91 93)(101 103)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(121 127)(122 126)(123 125)(128 140)(129 139)(130 138)(131 137)(132 136)(133 135)(141 147)(142 146)(143 145)(148 160)(149 159)(150 158)(151 157)(152 156)(153 155)
(1 100 127 152)(2 91 128 143)(3 82 129 154)(4 93 130 145)(5 84 131 156)(6 95 132 147)(7 86 133 158)(8 97 134 149)(9 88 135 160)(10 99 136 151)(11 90 137 142)(12 81 138 153)(13 92 139 144)(14 83 140 155)(15 94 121 146)(16 85 122 157)(17 96 123 148)(18 87 124 159)(19 98 125 150)(20 89 126 141)(21 57 105 62)(22 48 106 73)(23 59 107 64)(24 50 108 75)(25 41 109 66)(26 52 110 77)(27 43 111 68)(28 54 112 79)(29 45 113 70)(30 56 114 61)(31 47 115 72)(32 58 116 63)(33 49 117 74)(34 60 118 65)(35 51 119 76)(36 42 120 67)(37 53 101 78)(38 44 102 69)(39 55 103 80)(40 46 104 71)
(1 26 127 110)(2 27 128 111)(3 28 129 112)(4 29 130 113)(5 30 131 114)(6 31 132 115)(7 32 133 116)(8 33 134 117)(9 34 135 118)(10 35 136 119)(11 36 137 120)(12 37 138 101)(13 38 139 102)(14 39 140 103)(15 40 121 104)(16 21 122 105)(17 22 123 106)(18 23 124 107)(19 24 125 108)(20 25 126 109)(41 89 66 141)(42 90 67 142)(43 91 68 143)(44 92 69 144)(45 93 70 145)(46 94 71 146)(47 95 72 147)(48 96 73 148)(49 97 74 149)(50 98 75 150)(51 99 76 151)(52 100 77 152)(53 81 78 153)(54 82 79 154)(55 83 80 155)(56 84 61 156)(57 85 62 157)(58 86 63 158)(59 87 64 159)(60 88 65 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,83)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,147)(142,146)(143,145)(148,160)(149,159)(150,158)(151,157)(152,156)(153,155), (1,100,127,152)(2,91,128,143)(3,82,129,154)(4,93,130,145)(5,84,131,156)(6,95,132,147)(7,86,133,158)(8,97,134,149)(9,88,135,160)(10,99,136,151)(11,90,137,142)(12,81,138,153)(13,92,139,144)(14,83,140,155)(15,94,121,146)(16,85,122,157)(17,96,123,148)(18,87,124,159)(19,98,125,150)(20,89,126,141)(21,57,105,62)(22,48,106,73)(23,59,107,64)(24,50,108,75)(25,41,109,66)(26,52,110,77)(27,43,111,68)(28,54,112,79)(29,45,113,70)(30,56,114,61)(31,47,115,72)(32,58,116,63)(33,49,117,74)(34,60,118,65)(35,51,119,76)(36,42,120,67)(37,53,101,78)(38,44,102,69)(39,55,103,80)(40,46,104,71), (1,26,127,110)(2,27,128,111)(3,28,129,112)(4,29,130,113)(5,30,131,114)(6,31,132,115)(7,32,133,116)(8,33,134,117)(9,34,135,118)(10,35,136,119)(11,36,137,120)(12,37,138,101)(13,38,139,102)(14,39,140,103)(15,40,121,104)(16,21,122,105)(17,22,123,106)(18,23,124,107)(19,24,125,108)(20,25,126,109)(41,89,66,141)(42,90,67,142)(43,91,68,143)(44,92,69,144)(45,93,70,145)(46,94,71,146)(47,95,72,147)(48,96,73,148)(49,97,74,149)(50,98,75,150)(51,99,76,151)(52,100,77,152)(53,81,78,153)(54,82,79,154)(55,83,80,155)(56,84,61,156)(57,85,62,157)(58,86,63,158)(59,87,64,159)(60,88,65,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,67)(62,66)(63,65)(68,80)(69,79)(70,78)(71,77)(72,76)(73,75)(81,83)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)(101,103)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(121,127)(122,126)(123,125)(128,140)(129,139)(130,138)(131,137)(132,136)(133,135)(141,147)(142,146)(143,145)(148,160)(149,159)(150,158)(151,157)(152,156)(153,155), (1,100,127,152)(2,91,128,143)(3,82,129,154)(4,93,130,145)(5,84,131,156)(6,95,132,147)(7,86,133,158)(8,97,134,149)(9,88,135,160)(10,99,136,151)(11,90,137,142)(12,81,138,153)(13,92,139,144)(14,83,140,155)(15,94,121,146)(16,85,122,157)(17,96,123,148)(18,87,124,159)(19,98,125,150)(20,89,126,141)(21,57,105,62)(22,48,106,73)(23,59,107,64)(24,50,108,75)(25,41,109,66)(26,52,110,77)(27,43,111,68)(28,54,112,79)(29,45,113,70)(30,56,114,61)(31,47,115,72)(32,58,116,63)(33,49,117,74)(34,60,118,65)(35,51,119,76)(36,42,120,67)(37,53,101,78)(38,44,102,69)(39,55,103,80)(40,46,104,71), (1,26,127,110)(2,27,128,111)(3,28,129,112)(4,29,130,113)(5,30,131,114)(6,31,132,115)(7,32,133,116)(8,33,134,117)(9,34,135,118)(10,35,136,119)(11,36,137,120)(12,37,138,101)(13,38,139,102)(14,39,140,103)(15,40,121,104)(16,21,122,105)(17,22,123,106)(18,23,124,107)(19,24,125,108)(20,25,126,109)(41,89,66,141)(42,90,67,142)(43,91,68,143)(44,92,69,144)(45,93,70,145)(46,94,71,146)(47,95,72,147)(48,96,73,148)(49,97,74,149)(50,98,75,150)(51,99,76,151)(52,100,77,152)(53,81,78,153)(54,82,79,154)(55,83,80,155)(56,84,61,156)(57,85,62,157)(58,86,63,158)(59,87,64,159)(60,88,65,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(36,40),(37,39),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(58,60),(61,67),(62,66),(63,65),(68,80),(69,79),(70,78),(71,77),(72,76),(73,75),(81,83),(84,100),(85,99),(86,98),(87,97),(88,96),(89,95),(90,94),(91,93),(101,103),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(121,127),(122,126),(123,125),(128,140),(129,139),(130,138),(131,137),(132,136),(133,135),(141,147),(142,146),(143,145),(148,160),(149,159),(150,158),(151,157),(152,156),(153,155)], [(1,100,127,152),(2,91,128,143),(3,82,129,154),(4,93,130,145),(5,84,131,156),(6,95,132,147),(7,86,133,158),(8,97,134,149),(9,88,135,160),(10,99,136,151),(11,90,137,142),(12,81,138,153),(13,92,139,144),(14,83,140,155),(15,94,121,146),(16,85,122,157),(17,96,123,148),(18,87,124,159),(19,98,125,150),(20,89,126,141),(21,57,105,62),(22,48,106,73),(23,59,107,64),(24,50,108,75),(25,41,109,66),(26,52,110,77),(27,43,111,68),(28,54,112,79),(29,45,113,70),(30,56,114,61),(31,47,115,72),(32,58,116,63),(33,49,117,74),(34,60,118,65),(35,51,119,76),(36,42,120,67),(37,53,101,78),(38,44,102,69),(39,55,103,80),(40,46,104,71)], [(1,26,127,110),(2,27,128,111),(3,28,129,112),(4,29,130,113),(5,30,131,114),(6,31,132,115),(7,32,133,116),(8,33,134,117),(9,34,135,118),(10,35,136,119),(11,36,137,120),(12,37,138,101),(13,38,139,102),(14,39,140,103),(15,40,121,104),(16,21,122,105),(17,22,123,106),(18,23,124,107),(19,24,125,108),(20,25,126,109),(41,89,66,141),(42,90,67,142),(43,91,68,143),(44,92,69,144),(45,93,70,145),(46,94,71,146),(47,95,72,147),(48,96,73,148),(49,97,74,149),(50,98,75,150),(51,99,76,151),(52,100,77,152),(53,81,78,153),(54,82,79,154),(55,83,80,155),(56,84,61,156),(57,85,62,157),(58,86,63,158),(59,87,64,159),(60,88,65,160)])

Matrix representation G ⊆ GL6(𝔽41)

9230000
0320000
00354000
001000
000010
000001
,
4000000
4010000
001600
0004000
000010
000001
,
1390000
1400000
0040000
0004000
000001
0000400
,
32180000
090000
0040000
0004000
0000147
0000727

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,23,32,0,0,0,0,0,0,35,1,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,40,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[32,0,0,0,0,0,18,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,14,7,0,0,0,0,7,27] >;

53 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4I4J4K4L4M4N4O4P4Q5A5B10A···10F20A···20L20M···20T
order1222222244444···4444444445510···1020···2020···20
size11111010101022224···41010101020202020222···24···48···8

53 irreducible representations

dim1111111112222224444
type+++++++++-+++++-+
imageC1C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D102+ (1+4)Q8×D5Q82D5D46D10
kernelD209Q8C4×Dic10C4×D20C4.Dic10D5×C4⋊C4D208C4D102Q8D103Q8C5×C4⋊Q8D20C4⋊Q8C20C42C4⋊C4C2×Q8C10C4C4C2
# reps1112222414242841444

In GAP, Magma, Sage, TeX

D_{20}\rtimes_9Q_8
% in TeX

G:=Group("D20:9Q8");
// GroupNames label

G:=SmallGroup(320,1402);
// by ID

G=gap.SmallGroup(320,1402);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,100,570,185,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=d*b*d^-1=a^10*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽