Copied to
clipboard

?

G = Dic1024D4order 320 = 26·5

2nd semidirect product of Dic10 and D4 acting through Inn(Dic10)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1024D4, C42.111D10, C10.1042+ (1+4), (C4×D4)⋊15D5, (D4×C20)⋊17C2, C203(C4○D4), C41(C4○D20), C20⋊D49C2, C51(Q86D4), C4.142(D4×D5), D10⋊D48C2, C4⋊D2012C2, C207D419C2, C4⋊C4.317D10, C20.348(C2×D4), D208C415C2, (C4×Dic10)⋊32C2, (C2×D4).216D10, (C2×C10).97C24, Dic5.42(C2×D4), C10.52(C22×D4), (C2×C20).785C23, (C4×C20).154C22, C22⋊C4.112D10, (C22×C4).210D10, C2.16(D48D10), C23.97(C22×D5), (C2×D20).144C22, (D4×C10).258C22, C4⋊Dic5.299C22, (C4×Dic5).83C22, (C22×D5).32C23, C22.122(C23×D5), D10⋊C4.54C22, (C22×C10).167C23, (C22×C20).109C22, (C2×Dic5).215C23, (C2×Dic10).324C22, C10.D4.111C22, C2.25(C2×D4×D5), (C2×C4○D20)⋊10C2, C2.48(C2×C4○D20), C10.44(C2×C4○D4), (C2×C4×D5).251C22, (C5×C4⋊C4).328C22, (C2×C4).580(C22×D5), (C2×C5⋊D4).14C22, (C5×C22⋊C4).124C22, SmallGroup(320,1225)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1024D4
C1C5C10C2×C10C22×D5C2×D20D208C4 — Dic1024D4
C5C2×C10 — Dic1024D4

Subgroups: 1270 in 312 conjugacy classes, 107 normal (29 characteristic)
C1, C2 [×3], C2 [×6], C4 [×4], C4 [×9], C22, C22 [×18], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×16], D4 [×24], Q8 [×4], C23 [×2], C23 [×4], D5 [×4], C10 [×3], C10 [×2], C42, C42 [×2], C22⋊C4 [×2], C22⋊C4 [×4], C4⋊C4, C4⋊C4 [×3], C22×C4 [×2], C22×C4 [×4], C2×D4, C2×D4 [×14], C2×Q8, C4○D4 [×8], Dic5 [×4], Dic5 [×2], C20 [×4], C20 [×3], D10 [×12], C2×C10, C2×C10 [×6], C4×D4, C4×D4 [×2], C4×Q8, C4⋊D4 [×6], C41D4 [×3], C2×C4○D4 [×2], Dic10 [×4], C4×D5 [×8], D20 [×10], C2×Dic5 [×4], C5⋊D4 [×12], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×2], C22×D5 [×4], C22×C10 [×2], Q86D4, C4×Dic5 [×2], C10.D4 [×2], C4⋊Dic5, D10⋊C4 [×4], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×C4×D5 [×4], C2×D20 [×6], C4○D20 [×8], C2×C5⋊D4 [×8], C22×C20 [×2], D4×C10, C4×Dic10, C4⋊D20, D10⋊D4 [×4], D208C4 [×2], C207D4 [×2], C20⋊D4 [×2], D4×C20, C2×C4○D20 [×2], Dic1024D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D5, C2×D4 [×6], C4○D4 [×2], C24, D10 [×7], C22×D4, C2×C4○D4, 2+ (1+4), C22×D5 [×7], Q86D4, C4○D20 [×2], D4×D5 [×2], C23×D5, C2×C4○D20, C2×D4×D5, D48D10, Dic1024D4

Generators and relations
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, ac=ca, ad=da, bc=cb, dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 67 11 77)(2 66 12 76)(3 65 13 75)(4 64 14 74)(5 63 15 73)(6 62 16 72)(7 61 17 71)(8 80 18 70)(9 79 19 69)(10 78 20 68)(21 133 31 123)(22 132 32 122)(23 131 33 121)(24 130 34 140)(25 129 35 139)(26 128 36 138)(27 127 37 137)(28 126 38 136)(29 125 39 135)(30 124 40 134)(41 87 51 97)(42 86 52 96)(43 85 53 95)(44 84 54 94)(45 83 55 93)(46 82 56 92)(47 81 57 91)(48 100 58 90)(49 99 59 89)(50 98 60 88)(101 152 111 142)(102 151 112 141)(103 150 113 160)(104 149 114 159)(105 148 115 158)(106 147 116 157)(107 146 117 156)(108 145 118 155)(109 144 119 154)(110 143 120 153)
(1 129 60 107)(2 130 41 108)(3 131 42 109)(4 132 43 110)(5 133 44 111)(6 134 45 112)(7 135 46 113)(8 136 47 114)(9 137 48 115)(10 138 49 116)(11 139 50 117)(12 140 51 118)(13 121 52 119)(14 122 53 120)(15 123 54 101)(16 124 55 102)(17 125 56 103)(18 126 57 104)(19 127 58 105)(20 128 59 106)(21 94 152 73)(22 95 153 74)(23 96 154 75)(24 97 155 76)(25 98 156 77)(26 99 157 78)(27 100 158 79)(28 81 159 80)(29 82 160 61)(30 83 141 62)(31 84 142 63)(32 85 143 64)(33 86 144 65)(34 87 145 66)(35 88 146 67)(36 89 147 68)(37 90 148 69)(38 91 149 70)(39 92 150 71)(40 93 151 72)
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 81)(15 82)(16 83)(17 84)(18 85)(19 86)(20 87)(21 135)(22 136)(23 137)(24 138)(25 139)(26 140)(27 121)(28 122)(29 123)(30 124)(31 125)(32 126)(33 127)(34 128)(35 129)(36 130)(37 131)(38 132)(39 133)(40 134)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)(52 79)(53 80)(54 61)(55 62)(56 63)(57 64)(58 65)(59 66)(60 67)(101 160)(102 141)(103 142)(104 143)(105 144)(106 145)(107 146)(108 147)(109 148)(110 149)(111 150)(112 151)(113 152)(114 153)(115 154)(116 155)(117 156)(118 157)(119 158)(120 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,11,77)(2,66,12,76)(3,65,13,75)(4,64,14,74)(5,63,15,73)(6,62,16,72)(7,61,17,71)(8,80,18,70)(9,79,19,69)(10,78,20,68)(21,133,31,123)(22,132,32,122)(23,131,33,121)(24,130,34,140)(25,129,35,139)(26,128,36,138)(27,127,37,137)(28,126,38,136)(29,125,39,135)(30,124,40,134)(41,87,51,97)(42,86,52,96)(43,85,53,95)(44,84,54,94)(45,83,55,93)(46,82,56,92)(47,81,57,91)(48,100,58,90)(49,99,59,89)(50,98,60,88)(101,152,111,142)(102,151,112,141)(103,150,113,160)(104,149,114,159)(105,148,115,158)(106,147,116,157)(107,146,117,156)(108,145,118,155)(109,144,119,154)(110,143,120,153), (1,129,60,107)(2,130,41,108)(3,131,42,109)(4,132,43,110)(5,133,44,111)(6,134,45,112)(7,135,46,113)(8,136,47,114)(9,137,48,115)(10,138,49,116)(11,139,50,117)(12,140,51,118)(13,121,52,119)(14,122,53,120)(15,123,54,101)(16,124,55,102)(17,125,56,103)(18,126,57,104)(19,127,58,105)(20,128,59,106)(21,94,152,73)(22,95,153,74)(23,96,154,75)(24,97,155,76)(25,98,156,77)(26,99,157,78)(27,100,158,79)(28,81,159,80)(29,82,160,61)(30,83,141,62)(31,84,142,63)(32,85,143,64)(33,86,144,65)(34,87,145,66)(35,88,146,67)(36,89,147,68)(37,90,148,69)(38,91,149,70)(39,92,150,71)(40,93,151,72), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,131)(38,132)(39,133)(40,134)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,11,77)(2,66,12,76)(3,65,13,75)(4,64,14,74)(5,63,15,73)(6,62,16,72)(7,61,17,71)(8,80,18,70)(9,79,19,69)(10,78,20,68)(21,133,31,123)(22,132,32,122)(23,131,33,121)(24,130,34,140)(25,129,35,139)(26,128,36,138)(27,127,37,137)(28,126,38,136)(29,125,39,135)(30,124,40,134)(41,87,51,97)(42,86,52,96)(43,85,53,95)(44,84,54,94)(45,83,55,93)(46,82,56,92)(47,81,57,91)(48,100,58,90)(49,99,59,89)(50,98,60,88)(101,152,111,142)(102,151,112,141)(103,150,113,160)(104,149,114,159)(105,148,115,158)(106,147,116,157)(107,146,117,156)(108,145,118,155)(109,144,119,154)(110,143,120,153), (1,129,60,107)(2,130,41,108)(3,131,42,109)(4,132,43,110)(5,133,44,111)(6,134,45,112)(7,135,46,113)(8,136,47,114)(9,137,48,115)(10,138,49,116)(11,139,50,117)(12,140,51,118)(13,121,52,119)(14,122,53,120)(15,123,54,101)(16,124,55,102)(17,125,56,103)(18,126,57,104)(19,127,58,105)(20,128,59,106)(21,94,152,73)(22,95,153,74)(23,96,154,75)(24,97,155,76)(25,98,156,77)(26,99,157,78)(27,100,158,79)(28,81,159,80)(29,82,160,61)(30,83,141,62)(31,84,142,63)(32,85,143,64)(33,86,144,65)(34,87,145,66)(35,88,146,67)(36,89,147,68)(37,90,148,69)(38,91,149,70)(39,92,150,71)(40,93,151,72), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,135)(22,136)(23,137)(24,138)(25,139)(26,140)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,127)(34,128)(35,129)(36,130)(37,131)(38,132)(39,133)(40,134)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,61)(55,62)(56,63)(57,64)(58,65)(59,66)(60,67)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,67,11,77),(2,66,12,76),(3,65,13,75),(4,64,14,74),(5,63,15,73),(6,62,16,72),(7,61,17,71),(8,80,18,70),(9,79,19,69),(10,78,20,68),(21,133,31,123),(22,132,32,122),(23,131,33,121),(24,130,34,140),(25,129,35,139),(26,128,36,138),(27,127,37,137),(28,126,38,136),(29,125,39,135),(30,124,40,134),(41,87,51,97),(42,86,52,96),(43,85,53,95),(44,84,54,94),(45,83,55,93),(46,82,56,92),(47,81,57,91),(48,100,58,90),(49,99,59,89),(50,98,60,88),(101,152,111,142),(102,151,112,141),(103,150,113,160),(104,149,114,159),(105,148,115,158),(106,147,116,157),(107,146,117,156),(108,145,118,155),(109,144,119,154),(110,143,120,153)], [(1,129,60,107),(2,130,41,108),(3,131,42,109),(4,132,43,110),(5,133,44,111),(6,134,45,112),(7,135,46,113),(8,136,47,114),(9,137,48,115),(10,138,49,116),(11,139,50,117),(12,140,51,118),(13,121,52,119),(14,122,53,120),(15,123,54,101),(16,124,55,102),(17,125,56,103),(18,126,57,104),(19,127,58,105),(20,128,59,106),(21,94,152,73),(22,95,153,74),(23,96,154,75),(24,97,155,76),(25,98,156,77),(26,99,157,78),(27,100,158,79),(28,81,159,80),(29,82,160,61),(30,83,141,62),(31,84,142,63),(32,85,143,64),(33,86,144,65),(34,87,145,66),(35,88,146,67),(36,89,147,68),(37,90,148,69),(38,91,149,70),(39,92,150,71),(40,93,151,72)], [(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,81),(15,82),(16,83),(17,84),(18,85),(19,86),(20,87),(21,135),(22,136),(23,137),(24,138),(25,139),(26,140),(27,121),(28,122),(29,123),(30,124),(31,125),(32,126),(33,127),(34,128),(35,129),(36,130),(37,131),(38,132),(39,133),(40,134),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78),(52,79),(53,80),(54,61),(55,62),(56,63),(57,64),(58,65),(59,66),(60,67),(101,160),(102,141),(103,142),(104,143),(105,144),(106,145),(107,146),(108,147),(109,148),(110,149),(111,150),(112,151),(113,152),(114,153),(115,154),(116,155),(117,156),(118,157),(119,158),(120,159)])

Matrix representation G ⊆ GL6(𝔽41)

010000
4060000
0072000
00183400
0000400
0000040
,
4000000
3510000
00221600
0031900
0000400
0000040
,
100000
010000
001000
000100
0000736
00001034
,
4000000
0400000
00192500
0022200
000010
00001140

G:=sub<GL(6,GF(41))| [0,40,0,0,0,0,1,6,0,0,0,0,0,0,7,18,0,0,0,0,20,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,35,0,0,0,0,0,1,0,0,0,0,0,0,22,3,0,0,0,0,16,19,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,10,0,0,0,0,36,34],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,19,2,0,0,0,0,25,22,0,0,0,0,0,0,1,11,0,0,0,0,0,40] >;

65 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4H4I4J4K4L4M4N4O5A5B10A···10F10G···10N20A···20H20I···20X
order12222222224···444444445510···1010···1020···2020···20
size111144202020202···24101010102020222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D10D10C4○D202+ (1+4)D4×D5D48D10
kernelDic1024D4C4×Dic10C4⋊D20D10⋊D4D208C4C207D4C20⋊D4D4×C20C2×C4○D20Dic10C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C4C2
# reps1114222124242424216144

In GAP, Magma, Sage, TeX

Dic_{10}\rtimes_{24}D_4
% in TeX

G:=Group("Dic10:24D4");
// GroupNames label

G:=SmallGroup(320,1225);
// by ID

G=gap.SmallGroup(320,1225);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,232,387,100,675,570,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽