# Extensions 1→N→G→Q→1 with N=C6 and Q=C22×D7

Direct product G=N×Q with N=C6 and Q=C22×D7
dρLabelID
D7×C22×C6168D7xC2^2xC6336,225

Semidirect products G=N:Q with N=C6 and Q=C22×D7
extensionφ:Q→Aut NdρLabelID
C61(C22×D7) = C22×S3×D7φ: C22×D7/D14C2 ⊆ Aut C684C6:1(C2^2xD7)336,219
C62(C22×D7) = C23×D21φ: C22×D7/C2×C14C2 ⊆ Aut C6168C6:2(C2^2xD7)336,227

Non-split extensions G=N.Q with N=C6 and Q=C22×D7
extensionφ:Q→Aut NdρLabelID
C6.1(C22×D7) = D7×Dic6φ: C22×D7/D14C2 ⊆ Aut C61684-C6.1(C2^2xD7)336,137
C6.2(C22×D7) = D285S3φ: C22×D7/D14C2 ⊆ Aut C61684-C6.2(C2^2xD7)336,138
C6.3(C22×D7) = D28⋊S3φ: C22×D7/D14C2 ⊆ Aut C61684C6.3(C2^2xD7)336,139
C6.4(C22×D7) = S3×Dic14φ: C22×D7/D14C2 ⊆ Aut C61684-C6.4(C2^2xD7)336,140
C6.5(C22×D7) = D12⋊D7φ: C22×D7/D14C2 ⊆ Aut C61684C6.5(C2^2xD7)336,141
C6.6(C22×D7) = D84⋊C2φ: C22×D7/D14C2 ⊆ Aut C61684+C6.6(C2^2xD7)336,142
C6.7(C22×D7) = D21⋊Q8φ: C22×D7/D14C2 ⊆ Aut C61684C6.7(C2^2xD7)336,143
C6.8(C22×D7) = D6.D14φ: C22×D7/D14C2 ⊆ Aut C61684C6.8(C2^2xD7)336,144
C6.9(C22×D7) = D125D7φ: C22×D7/D14C2 ⊆ Aut C61684-C6.9(C2^2xD7)336,145
C6.10(C22×D7) = D14.D6φ: C22×D7/D14C2 ⊆ Aut C61684+C6.10(C2^2xD7)336,146
C6.11(C22×D7) = C4×S3×D7φ: C22×D7/D14C2 ⊆ Aut C6844C6.11(C2^2xD7)336,147
C6.12(C22×D7) = D7×D12φ: C22×D7/D14C2 ⊆ Aut C6844+C6.12(C2^2xD7)336,148
C6.13(C22×D7) = S3×D28φ: C22×D7/D14C2 ⊆ Aut C6844+C6.13(C2^2xD7)336,149
C6.14(C22×D7) = C28⋊D6φ: C22×D7/D14C2 ⊆ Aut C6844C6.14(C2^2xD7)336,150
C6.15(C22×D7) = C2×Dic3×D7φ: C22×D7/D14C2 ⊆ Aut C6168C6.15(C2^2xD7)336,151
C6.16(C22×D7) = Dic7.D6φ: C22×D7/D14C2 ⊆ Aut C61684C6.16(C2^2xD7)336,152
C6.17(C22×D7) = C42.C23φ: C22×D7/D14C2 ⊆ Aut C61684-C6.17(C2^2xD7)336,153
C6.18(C22×D7) = C2×S3×Dic7φ: C22×D7/D14C2 ⊆ Aut C6168C6.18(C2^2xD7)336,154
C6.19(C22×D7) = Dic3.D14φ: C22×D7/D14C2 ⊆ Aut C61684C6.19(C2^2xD7)336,155
C6.20(C22×D7) = C2×D21⋊C4φ: C22×D7/D14C2 ⊆ Aut C6168C6.20(C2^2xD7)336,156
C6.21(C22×D7) = C2×C21⋊D4φ: C22×D7/D14C2 ⊆ Aut C6168C6.21(C2^2xD7)336,157
C6.22(C22×D7) = C2×C3⋊D28φ: C22×D7/D14C2 ⊆ Aut C6168C6.22(C2^2xD7)336,158
C6.23(C22×D7) = C2×C7⋊D12φ: C22×D7/D14C2 ⊆ Aut C6168C6.23(C2^2xD7)336,159
C6.24(C22×D7) = C2×C21⋊Q8φ: C22×D7/D14C2 ⊆ Aut C6336C6.24(C2^2xD7)336,160
C6.25(C22×D7) = D7×C3⋊D4φ: C22×D7/D14C2 ⊆ Aut C6844C6.25(C2^2xD7)336,161
C6.26(C22×D7) = S3×C7⋊D4φ: C22×D7/D14C2 ⊆ Aut C6844C6.26(C2^2xD7)336,162
C6.27(C22×D7) = D6⋊D14φ: C22×D7/D14C2 ⊆ Aut C6844+C6.27(C2^2xD7)336,163
C6.28(C22×D7) = C2×Dic42φ: C22×D7/C2×C14C2 ⊆ Aut C6336C6.28(C2^2xD7)336,194
C6.29(C22×D7) = C2×C4×D21φ: C22×D7/C2×C14C2 ⊆ Aut C6168C6.29(C2^2xD7)336,195
C6.30(C22×D7) = C2×D84φ: C22×D7/C2×C14C2 ⊆ Aut C6168C6.30(C2^2xD7)336,196
C6.31(C22×D7) = D8411C2φ: C22×D7/C2×C14C2 ⊆ Aut C61682C6.31(C2^2xD7)336,197
C6.32(C22×D7) = D4×D21φ: C22×D7/C2×C14C2 ⊆ Aut C6844+C6.32(C2^2xD7)336,198
C6.33(C22×D7) = D42D21φ: C22×D7/C2×C14C2 ⊆ Aut C61684-C6.33(C2^2xD7)336,199
C6.34(C22×D7) = Q8×D21φ: C22×D7/C2×C14C2 ⊆ Aut C61684-C6.34(C2^2xD7)336,200
C6.35(C22×D7) = Q83D21φ: C22×D7/C2×C14C2 ⊆ Aut C61684+C6.35(C2^2xD7)336,201
C6.36(C22×D7) = C22×Dic21φ: C22×D7/C2×C14C2 ⊆ Aut C6336C6.36(C2^2xD7)336,202
C6.37(C22×D7) = C2×C217D4φ: C22×D7/C2×C14C2 ⊆ Aut C6168C6.37(C2^2xD7)336,203
C6.38(C22×D7) = C6×Dic14central extension (φ=1)336C6.38(C2^2xD7)336,174
C6.39(C22×D7) = D7×C2×C12central extension (φ=1)168C6.39(C2^2xD7)336,175
C6.40(C22×D7) = C6×D28central extension (φ=1)168C6.40(C2^2xD7)336,176
C6.41(C22×D7) = C3×C4○D28central extension (φ=1)1682C6.41(C2^2xD7)336,177
C6.42(C22×D7) = C3×D4×D7central extension (φ=1)844C6.42(C2^2xD7)336,178
C6.43(C22×D7) = C3×D42D7central extension (φ=1)1684C6.43(C2^2xD7)336,179
C6.44(C22×D7) = C3×Q8×D7central extension (φ=1)1684C6.44(C2^2xD7)336,180
C6.45(C22×D7) = C3×Q82D7central extension (φ=1)1684C6.45(C2^2xD7)336,181
C6.46(C22×D7) = C2×C6×Dic7central extension (φ=1)336C6.46(C2^2xD7)336,182
C6.47(C22×D7) = C6×C7⋊D4central extension (φ=1)168C6.47(C2^2xD7)336,183

׿
×
𝔽