Copied to
clipboard

?

G = D2810D4order 448 = 26·7

3rd semidirect product of D28 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2810D4, C4219D14, C14.1252+ (1+4), C4.70(D4×D7), (C4×D28)⋊43C2, C79(D45D4), (C2×Q8)⋊19D14, C28.63(C2×D4), C282D433C2, (C4×C28)⋊23C22, C22⋊C433D14, D14.24(C2×D4), C4.4D410D7, D1411(C4○D4), D14⋊D440C2, C22⋊D2824C2, D14⋊C454C22, D143Q828C2, (C2×D4).173D14, (C2×D28)⋊28C22, C4⋊Dic760C22, (Q8×C14)⋊13C22, C14.90(C22×D4), D14.D442C2, (C2×C28).601C23, (C2×C14).220C24, Dic7⋊C426C22, C2.49(D48D14), C23.D733C22, C23.42(C22×D7), (D4×C14).155C22, (C22×C14).50C23, (C23×D7).64C22, C22.241(C23×D7), (C2×Dic7).115C23, (C22×D7).215C23, (C2×D4×D7)⋊17C2, C2.63(C2×D4×D7), C2.76(D7×C4○D4), (C2×C4×D7)⋊26C22, (D7×C22⋊C4)⋊17C2, (C2×Q82D7)⋊11C2, C14.187(C2×C4○D4), (C7×C4.4D4)⋊12C2, (C2×C7⋊D4)⋊23C22, (C7×C22⋊C4)⋊29C22, (C2×C4).195(C22×D7), SmallGroup(448,1129)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2810D4
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — D2810D4
C7C2×C14 — D2810D4

Subgroups: 1932 in 334 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×9], C4 [×2], C4 [×8], C22, C22 [×29], C7, C2×C4 [×3], C2×C4 [×2], C2×C4 [×14], D4 [×18], Q8 [×2], C23 [×2], C23 [×14], D7 [×7], C14 [×3], C14 [×2], C42, C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×6], C2×D4, C2×D4 [×12], C2×Q8, C4○D4 [×4], C24 [×2], Dic7 [×4], C28 [×2], C28 [×4], D14 [×6], D14 [×17], C2×C14, C2×C14 [×6], C2×C22⋊C4 [×2], C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4, C22×D4, C2×C4○D4, C4×D7 [×10], D28 [×4], D28 [×6], C2×Dic7 [×2], C2×Dic7 [×2], C7⋊D4 [×6], C2×C28 [×3], C2×C28 [×2], C7×D4 [×2], C7×Q8 [×2], C22×D7 [×2], C22×D7 [×2], C22×D7 [×10], C22×C14 [×2], D45D4, Dic7⋊C4 [×2], C4⋊Dic7 [×2], D14⋊C4 [×2], D14⋊C4 [×4], C23.D7 [×2], C4×C28, C7×C22⋊C4 [×4], C2×C4×D7 [×2], C2×C4×D7 [×4], C2×D28 [×2], C2×D28 [×2], D4×D7 [×4], Q82D7 [×4], C2×C7⋊D4 [×4], D4×C14, Q8×C14, C23×D7 [×2], C4×D28 [×2], D7×C22⋊C4 [×2], C22⋊D28 [×2], D14.D4 [×2], D14⋊D4 [×2], C282D4, D143Q8, C7×C4.4D4, C2×D4×D7, C2×Q82D7, D2810D4

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C4○D4 [×2], C24, D14 [×7], C22×D4, C2×C4○D4, 2+ (1+4), C22×D7 [×7], D45D4, D4×D7 [×2], C23×D7, C2×D4×D7, D7×C4○D4, D48D14, D2810D4

Generators and relations
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, dad=a13, cbc-1=a14b, dbd=a26b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 28)(23 27)(24 26)(29 45)(30 44)(31 43)(32 42)(33 41)(34 40)(35 39)(36 38)(46 56)(47 55)(48 54)(49 53)(50 52)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(85 107)(86 106)(87 105)(88 104)(89 103)(90 102)(91 101)(92 100)(93 99)(94 98)(95 97)(108 112)(109 111)
(1 82 86 34)(2 83 87 35)(3 84 88 36)(4 57 89 37)(5 58 90 38)(6 59 91 39)(7 60 92 40)(8 61 93 41)(9 62 94 42)(10 63 95 43)(11 64 96 44)(12 65 97 45)(13 66 98 46)(14 67 99 47)(15 68 100 48)(16 69 101 49)(17 70 102 50)(18 71 103 51)(19 72 104 52)(20 73 105 53)(21 74 106 54)(22 75 107 55)(23 76 108 56)(24 77 109 29)(25 78 110 30)(26 79 111 31)(27 80 112 32)(28 81 85 33)
(1 34)(2 47)(3 32)(4 45)(5 30)(6 43)(7 56)(8 41)(9 54)(10 39)(11 52)(12 37)(13 50)(14 35)(15 48)(16 33)(17 46)(18 31)(19 44)(20 29)(21 42)(22 55)(23 40)(24 53)(25 38)(26 51)(27 36)(28 49)(57 97)(58 110)(59 95)(60 108)(61 93)(62 106)(63 91)(64 104)(65 89)(66 102)(67 87)(68 100)(69 85)(70 98)(71 111)(72 96)(73 109)(74 94)(75 107)(76 92)(77 105)(78 90)(79 103)(80 88)(81 101)(82 86)(83 99)(84 112)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,56)(47,55)(48,54)(49,53)(50,52)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97)(108,112)(109,111), (1,82,86,34)(2,83,87,35)(3,84,88,36)(4,57,89,37)(5,58,90,38)(6,59,91,39)(7,60,92,40)(8,61,93,41)(9,62,94,42)(10,63,95,43)(11,64,96,44)(12,65,97,45)(13,66,98,46)(14,67,99,47)(15,68,100,48)(16,69,101,49)(17,70,102,50)(18,71,103,51)(19,72,104,52)(20,73,105,53)(21,74,106,54)(22,75,107,55)(23,76,108,56)(24,77,109,29)(25,78,110,30)(26,79,111,31)(27,80,112,32)(28,81,85,33), (1,34)(2,47)(3,32)(4,45)(5,30)(6,43)(7,56)(8,41)(9,54)(10,39)(11,52)(12,37)(13,50)(14,35)(15,48)(16,33)(17,46)(18,31)(19,44)(20,29)(21,42)(22,55)(23,40)(24,53)(25,38)(26,51)(27,36)(28,49)(57,97)(58,110)(59,95)(60,108)(61,93)(62,106)(63,91)(64,104)(65,89)(66,102)(67,87)(68,100)(69,85)(70,98)(71,111)(72,96)(73,109)(74,94)(75,107)(76,92)(77,105)(78,90)(79,103)(80,88)(81,101)(82,86)(83,99)(84,112)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,45)(30,44)(31,43)(32,42)(33,41)(34,40)(35,39)(36,38)(46,56)(47,55)(48,54)(49,53)(50,52)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97)(108,112)(109,111), (1,82,86,34)(2,83,87,35)(3,84,88,36)(4,57,89,37)(5,58,90,38)(6,59,91,39)(7,60,92,40)(8,61,93,41)(9,62,94,42)(10,63,95,43)(11,64,96,44)(12,65,97,45)(13,66,98,46)(14,67,99,47)(15,68,100,48)(16,69,101,49)(17,70,102,50)(18,71,103,51)(19,72,104,52)(20,73,105,53)(21,74,106,54)(22,75,107,55)(23,76,108,56)(24,77,109,29)(25,78,110,30)(26,79,111,31)(27,80,112,32)(28,81,85,33), (1,34)(2,47)(3,32)(4,45)(5,30)(6,43)(7,56)(8,41)(9,54)(10,39)(11,52)(12,37)(13,50)(14,35)(15,48)(16,33)(17,46)(18,31)(19,44)(20,29)(21,42)(22,55)(23,40)(24,53)(25,38)(26,51)(27,36)(28,49)(57,97)(58,110)(59,95)(60,108)(61,93)(62,106)(63,91)(64,104)(65,89)(66,102)(67,87)(68,100)(69,85)(70,98)(71,111)(72,96)(73,109)(74,94)(75,107)(76,92)(77,105)(78,90)(79,103)(80,88)(81,101)(82,86)(83,99)(84,112) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,28),(23,27),(24,26),(29,45),(30,44),(31,43),(32,42),(33,41),(34,40),(35,39),(36,38),(46,56),(47,55),(48,54),(49,53),(50,52),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(85,107),(86,106),(87,105),(88,104),(89,103),(90,102),(91,101),(92,100),(93,99),(94,98),(95,97),(108,112),(109,111)], [(1,82,86,34),(2,83,87,35),(3,84,88,36),(4,57,89,37),(5,58,90,38),(6,59,91,39),(7,60,92,40),(8,61,93,41),(9,62,94,42),(10,63,95,43),(11,64,96,44),(12,65,97,45),(13,66,98,46),(14,67,99,47),(15,68,100,48),(16,69,101,49),(17,70,102,50),(18,71,103,51),(19,72,104,52),(20,73,105,53),(21,74,106,54),(22,75,107,55),(23,76,108,56),(24,77,109,29),(25,78,110,30),(26,79,111,31),(27,80,112,32),(28,81,85,33)], [(1,34),(2,47),(3,32),(4,45),(5,30),(6,43),(7,56),(8,41),(9,54),(10,39),(11,52),(12,37),(13,50),(14,35),(15,48),(16,33),(17,46),(18,31),(19,44),(20,29),(21,42),(22,55),(23,40),(24,53),(25,38),(26,51),(27,36),(28,49),(57,97),(58,110),(59,95),(60,108),(61,93),(62,106),(63,91),(64,104),(65,89),(66,102),(67,87),(68,100),(69,85),(70,98),(71,111),(72,96),(73,109),(74,94),(75,107),(76,92),(77,105),(78,90),(79,103),(80,88),(81,101),(82,86),(83,99),(84,112)])

Matrix representation G ⊆ GL6(𝔽29)

430000
14180000
0028000
0002800
00001216
0000017
,
410000
14250000
0028000
0002800
000010
00001328
,
2800000
0280000
000100
0028000
0000111
0000028
,
0210000
1800000
0002800
0028000
0000111
0000028

G:=sub<GL(6,GF(29))| [4,14,0,0,0,0,3,18,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,12,0,0,0,0,0,16,17],[4,14,0,0,0,0,1,25,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,13,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,11,28],[0,18,0,0,0,0,21,0,0,0,0,0,0,0,0,28,0,0,0,0,28,0,0,0,0,0,0,0,1,0,0,0,0,0,11,28] >;

67 conjugacy classes

class 1 2A2B2C2D2E2F···2K2L4A4B4C4D4E4F4G4H4I4J4K4L7A7B7C14A···14I14J···14O28A···28R28S···28X
order1222222···2244444444444477714···1414···1428···2828···28
size11114414···1428222244414142828282222···28···84···48···8

67 irreducible representations

dim1111111111122222224444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D142+ (1+4)D4×D7D7×C4○D4D48D14
kernelD2810D4C4×D28D7×C22⋊C4C22⋊D28D14.D4D14⋊D4C282D4D143Q8C7×C4.4D4C2×D4×D7C2×Q82D7D28C4.4D4D14C42C22⋊C4C2×D4C2×Q8C14C4C2C2
# reps12222211111434312331666

In GAP, Magma, Sage, TeX

D_{28}\rtimes_{10}D_4
% in TeX

G:=Group("D28:10D4");
// GroupNames label

G:=SmallGroup(448,1129);
// by ID

G=gap.SmallGroup(448,1129);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,1571,570,297,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^13,c*b*c^-1=a^14*b,d*b*d=a^26*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽