direct product, non-abelian, soluble
Aliases: C2×Q8.D15, Q8.1D30, C10⋊CSU2(𝔽3), SL2(𝔽3).7D10, (C2×C10).5S4, (C5×Q8).8D6, C10.19(C2×S4), C22.4(C5⋊S4), (C2×Q8).2D15, (Q8×C10).2S3, C5⋊2(C2×CSU2(𝔽3)), (C2×SL2(𝔽3)).2D5, (C10×SL2(𝔽3)).2C2, (C5×SL2(𝔽3)).7C22, C2.5(C2×C5⋊S4), SmallGroup(480,1027)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C2 — Q8 — C5×SL2(𝔽3) — C2×Q8.D15 |
| C5×SL2(𝔽3) — C2×Q8.D15 |
Subgroups: 514 in 78 conjugacy classes, 21 normal (15 characteristic)
C1, C2, C2 [×2], C3, C4 [×4], C22, C5, C6 [×3], C8 [×2], C2×C4 [×2], Q8, Q8 [×4], C10, C10 [×2], Dic3 [×2], C2×C6, C15, C2×C8, Q16 [×4], C2×Q8, C2×Q8, Dic5 [×2], C20 [×2], C2×C10, SL2(𝔽3), C2×Dic3, C30 [×3], C2×Q16, C5⋊2C8 [×2], Dic10 [×3], C2×Dic5, C2×C20, C5×Q8, C5×Q8, CSU2(𝔽3) [×2], C2×SL2(𝔽3), Dic15 [×2], C2×C30, C2×C5⋊2C8, C5⋊Q16 [×4], C2×Dic10, Q8×C10, C2×CSU2(𝔽3), C5×SL2(𝔽3), C2×Dic15, C2×C5⋊Q16, Q8.D15 [×2], C10×SL2(𝔽3), C2×Q8.D15
Quotients:
C1, C2 [×3], C22, S3, D5, D6, D10, S4, D15, CSU2(𝔽3) [×2], C2×S4, D30, C2×CSU2(𝔽3), C5⋊S4, Q8.D15 [×2], C2×C5⋊S4, C2×Q8.D15
Generators and relations
G = < a,b,c,d,e | a2=b4=d15=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, dbd-1=c, ebe-1=b-1c, dcd-1=bc, ece-1=b2c, ede-1=d-1 >
(1 22)(2 23)(3 24)(4 25)(5 21)(6 30)(7 26)(8 27)(9 28)(10 29)(11 39)(12 40)(13 36)(14 37)(15 38)(16 31)(17 32)(18 33)(19 34)(20 35)(41 70)(42 56)(43 57)(44 58)(45 59)(46 60)(47 61)(48 62)(49 63)(50 64)(51 65)(52 66)(53 67)(54 68)(55 69)(71 105)(72 106)(73 107)(74 108)(75 109)(76 110)(77 111)(78 112)(79 113)(80 114)(81 115)(82 101)(83 102)(84 103)(85 104)(86 136)(87 137)(88 138)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 145)(96 131)(97 132)(98 133)(99 134)(100 135)(116 148)(117 149)(118 150)(119 151)(120 152)(121 153)(122 154)(123 155)(124 156)(125 157)(126 158)(127 159)(128 160)(129 146)(130 147)
(1 65 9 150)(2 56 10 156)(3 62 6 147)(4 68 7 153)(5 59 8 159)(11 139 31 71)(12 145 32 77)(13 136 33 83)(14 142 34 74)(15 133 35 80)(16 105 39 89)(17 111 40 95)(18 102 36 86)(19 108 37 92)(20 114 38 98)(21 45 27 127)(22 51 28 118)(23 42 29 124)(24 48 30 130)(25 54 26 121)(41 128 123 46)(43 53 125 120)(44 116 126 49)(47 119 129 52)(50 122 117 55)(57 67 157 152)(58 148 158 63)(60 70 160 155)(61 151 146 66)(64 154 149 69)(72 82 140 135)(73 131 141 78)(75 85 143 138)(76 134 144 81)(79 137 132 84)(87 97 103 113)(88 109 104 93)(90 100 106 101)(91 112 107 96)(94 115 110 99)
(1 70 9 155)(2 61 10 146)(3 67 6 152)(4 58 7 158)(5 64 8 149)(11 144 31 76)(12 135 32 82)(13 141 33 73)(14 132 34 79)(15 138 35 85)(16 110 39 94)(17 101 40 100)(18 107 36 91)(19 113 37 97)(20 104 38 88)(21 50 27 117)(22 41 28 123)(23 47 29 129)(24 53 30 120)(25 44 26 126)(42 52 124 119)(43 130 125 48)(45 55 127 122)(46 118 128 51)(49 121 116 54)(56 66 156 151)(57 147 157 62)(59 69 159 154)(60 150 160 65)(63 153 148 68)(71 81 139 134)(72 145 140 77)(74 84 142 137)(75 133 143 80)(78 136 131 83)(86 96 102 112)(87 108 103 92)(89 99 105 115)(90 111 106 95)(93 114 109 98)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115)(116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143 144 145)(146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 32 9 12)(2 31 10 11)(3 35 6 15)(4 34 7 14)(5 33 8 13)(16 29 39 23)(17 28 40 22)(18 27 36 21)(19 26 37 25)(20 30 38 24)(41 100 123 101)(42 99 124 115)(43 98 125 114)(44 97 126 113)(45 96 127 112)(46 95 128 111)(47 94 129 110)(48 93 130 109)(49 92 116 108)(50 91 117 107)(51 90 118 106)(52 89 119 105)(53 88 120 104)(54 87 121 103)(55 86 122 102)(56 134 156 81)(57 133 157 80)(58 132 158 79)(59 131 159 78)(60 145 160 77)(61 144 146 76)(62 143 147 75)(63 142 148 74)(64 141 149 73)(65 140 150 72)(66 139 151 71)(67 138 152 85)(68 137 153 84)(69 136 154 83)(70 135 155 82)
G:=sub<Sym(160)| (1,22)(2,23)(3,24)(4,25)(5,21)(6,30)(7,26)(8,27)(9,28)(10,29)(11,39)(12,40)(13,36)(14,37)(15,38)(16,31)(17,32)(18,33)(19,34)(20,35)(41,70)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(81,115)(82,101)(83,102)(84,103)(85,104)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145)(96,131)(97,132)(98,133)(99,134)(100,135)(116,148)(117,149)(118,150)(119,151)(120,152)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,146)(130,147), (1,65,9,150)(2,56,10,156)(3,62,6,147)(4,68,7,153)(5,59,8,159)(11,139,31,71)(12,145,32,77)(13,136,33,83)(14,142,34,74)(15,133,35,80)(16,105,39,89)(17,111,40,95)(18,102,36,86)(19,108,37,92)(20,114,38,98)(21,45,27,127)(22,51,28,118)(23,42,29,124)(24,48,30,130)(25,54,26,121)(41,128,123,46)(43,53,125,120)(44,116,126,49)(47,119,129,52)(50,122,117,55)(57,67,157,152)(58,148,158,63)(60,70,160,155)(61,151,146,66)(64,154,149,69)(72,82,140,135)(73,131,141,78)(75,85,143,138)(76,134,144,81)(79,137,132,84)(87,97,103,113)(88,109,104,93)(90,100,106,101)(91,112,107,96)(94,115,110,99), (1,70,9,155)(2,61,10,146)(3,67,6,152)(4,58,7,158)(5,64,8,149)(11,144,31,76)(12,135,32,82)(13,141,33,73)(14,132,34,79)(15,138,35,85)(16,110,39,94)(17,101,40,100)(18,107,36,91)(19,113,37,97)(20,104,38,88)(21,50,27,117)(22,41,28,123)(23,47,29,129)(24,53,30,120)(25,44,26,126)(42,52,124,119)(43,130,125,48)(45,55,127,122)(46,118,128,51)(49,121,116,54)(56,66,156,151)(57,147,157,62)(59,69,159,154)(60,150,160,65)(63,153,148,68)(71,81,139,134)(72,145,140,77)(74,84,142,137)(75,133,143,80)(78,136,131,83)(86,96,102,112)(87,108,103,92)(89,99,105,115)(90,111,106,95)(93,114,109,98), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,32,9,12)(2,31,10,11)(3,35,6,15)(4,34,7,14)(5,33,8,13)(16,29,39,23)(17,28,40,22)(18,27,36,21)(19,26,37,25)(20,30,38,24)(41,100,123,101)(42,99,124,115)(43,98,125,114)(44,97,126,113)(45,96,127,112)(46,95,128,111)(47,94,129,110)(48,93,130,109)(49,92,116,108)(50,91,117,107)(51,90,118,106)(52,89,119,105)(53,88,120,104)(54,87,121,103)(55,86,122,102)(56,134,156,81)(57,133,157,80)(58,132,158,79)(59,131,159,78)(60,145,160,77)(61,144,146,76)(62,143,147,75)(63,142,148,74)(64,141,149,73)(65,140,150,72)(66,139,151,71)(67,138,152,85)(68,137,153,84)(69,136,154,83)(70,135,155,82)>;
G:=Group( (1,22)(2,23)(3,24)(4,25)(5,21)(6,30)(7,26)(8,27)(9,28)(10,29)(11,39)(12,40)(13,36)(14,37)(15,38)(16,31)(17,32)(18,33)(19,34)(20,35)(41,70)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(49,63)(50,64)(51,65)(52,66)(53,67)(54,68)(55,69)(71,105)(72,106)(73,107)(74,108)(75,109)(76,110)(77,111)(78,112)(79,113)(80,114)(81,115)(82,101)(83,102)(84,103)(85,104)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145)(96,131)(97,132)(98,133)(99,134)(100,135)(116,148)(117,149)(118,150)(119,151)(120,152)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,146)(130,147), (1,65,9,150)(2,56,10,156)(3,62,6,147)(4,68,7,153)(5,59,8,159)(11,139,31,71)(12,145,32,77)(13,136,33,83)(14,142,34,74)(15,133,35,80)(16,105,39,89)(17,111,40,95)(18,102,36,86)(19,108,37,92)(20,114,38,98)(21,45,27,127)(22,51,28,118)(23,42,29,124)(24,48,30,130)(25,54,26,121)(41,128,123,46)(43,53,125,120)(44,116,126,49)(47,119,129,52)(50,122,117,55)(57,67,157,152)(58,148,158,63)(60,70,160,155)(61,151,146,66)(64,154,149,69)(72,82,140,135)(73,131,141,78)(75,85,143,138)(76,134,144,81)(79,137,132,84)(87,97,103,113)(88,109,104,93)(90,100,106,101)(91,112,107,96)(94,115,110,99), (1,70,9,155)(2,61,10,146)(3,67,6,152)(4,58,7,158)(5,64,8,149)(11,144,31,76)(12,135,32,82)(13,141,33,73)(14,132,34,79)(15,138,35,85)(16,110,39,94)(17,101,40,100)(18,107,36,91)(19,113,37,97)(20,104,38,88)(21,50,27,117)(22,41,28,123)(23,47,29,129)(24,53,30,120)(25,44,26,126)(42,52,124,119)(43,130,125,48)(45,55,127,122)(46,118,128,51)(49,121,116,54)(56,66,156,151)(57,147,157,62)(59,69,159,154)(60,150,160,65)(63,153,148,68)(71,81,139,134)(72,145,140,77)(74,84,142,137)(75,133,143,80)(78,136,131,83)(86,96,102,112)(87,108,103,92)(89,99,105,115)(90,111,106,95)(93,114,109,98), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115)(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145)(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,32,9,12)(2,31,10,11)(3,35,6,15)(4,34,7,14)(5,33,8,13)(16,29,39,23)(17,28,40,22)(18,27,36,21)(19,26,37,25)(20,30,38,24)(41,100,123,101)(42,99,124,115)(43,98,125,114)(44,97,126,113)(45,96,127,112)(46,95,128,111)(47,94,129,110)(48,93,130,109)(49,92,116,108)(50,91,117,107)(51,90,118,106)(52,89,119,105)(53,88,120,104)(54,87,121,103)(55,86,122,102)(56,134,156,81)(57,133,157,80)(58,132,158,79)(59,131,159,78)(60,145,160,77)(61,144,146,76)(62,143,147,75)(63,142,148,74)(64,141,149,73)(65,140,150,72)(66,139,151,71)(67,138,152,85)(68,137,153,84)(69,136,154,83)(70,135,155,82) );
G=PermutationGroup([(1,22),(2,23),(3,24),(4,25),(5,21),(6,30),(7,26),(8,27),(9,28),(10,29),(11,39),(12,40),(13,36),(14,37),(15,38),(16,31),(17,32),(18,33),(19,34),(20,35),(41,70),(42,56),(43,57),(44,58),(45,59),(46,60),(47,61),(48,62),(49,63),(50,64),(51,65),(52,66),(53,67),(54,68),(55,69),(71,105),(72,106),(73,107),(74,108),(75,109),(76,110),(77,111),(78,112),(79,113),(80,114),(81,115),(82,101),(83,102),(84,103),(85,104),(86,136),(87,137),(88,138),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,145),(96,131),(97,132),(98,133),(99,134),(100,135),(116,148),(117,149),(118,150),(119,151),(120,152),(121,153),(122,154),(123,155),(124,156),(125,157),(126,158),(127,159),(128,160),(129,146),(130,147)], [(1,65,9,150),(2,56,10,156),(3,62,6,147),(4,68,7,153),(5,59,8,159),(11,139,31,71),(12,145,32,77),(13,136,33,83),(14,142,34,74),(15,133,35,80),(16,105,39,89),(17,111,40,95),(18,102,36,86),(19,108,37,92),(20,114,38,98),(21,45,27,127),(22,51,28,118),(23,42,29,124),(24,48,30,130),(25,54,26,121),(41,128,123,46),(43,53,125,120),(44,116,126,49),(47,119,129,52),(50,122,117,55),(57,67,157,152),(58,148,158,63),(60,70,160,155),(61,151,146,66),(64,154,149,69),(72,82,140,135),(73,131,141,78),(75,85,143,138),(76,134,144,81),(79,137,132,84),(87,97,103,113),(88,109,104,93),(90,100,106,101),(91,112,107,96),(94,115,110,99)], [(1,70,9,155),(2,61,10,146),(3,67,6,152),(4,58,7,158),(5,64,8,149),(11,144,31,76),(12,135,32,82),(13,141,33,73),(14,132,34,79),(15,138,35,85),(16,110,39,94),(17,101,40,100),(18,107,36,91),(19,113,37,97),(20,104,38,88),(21,50,27,117),(22,41,28,123),(23,47,29,129),(24,53,30,120),(25,44,26,126),(42,52,124,119),(43,130,125,48),(45,55,127,122),(46,118,128,51),(49,121,116,54),(56,66,156,151),(57,147,157,62),(59,69,159,154),(60,150,160,65),(63,153,148,68),(71,81,139,134),(72,145,140,77),(74,84,142,137),(75,133,143,80),(78,136,131,83),(86,96,102,112),(87,108,103,92),(89,99,105,115),(90,111,106,95),(93,114,109,98)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115),(116,117,118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145),(146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,32,9,12),(2,31,10,11),(3,35,6,15),(4,34,7,14),(5,33,8,13),(16,29,39,23),(17,28,40,22),(18,27,36,21),(19,26,37,25),(20,30,38,24),(41,100,123,101),(42,99,124,115),(43,98,125,114),(44,97,126,113),(45,96,127,112),(46,95,128,111),(47,94,129,110),(48,93,130,109),(49,92,116,108),(50,91,117,107),(51,90,118,106),(52,89,119,105),(53,88,120,104),(54,87,121,103),(55,86,122,102),(56,134,156,81),(57,133,157,80),(58,132,158,79),(59,131,159,78),(60,145,160,77),(61,144,146,76),(62,143,147,75),(63,142,148,74),(64,141,149,73),(65,140,150,72),(66,139,151,71),(67,138,152,85),(68,137,153,84),(69,136,154,83),(70,135,155,82)])
Matrix representation ►G ⊆ GL4(𝔽241) generated by
| 240 | 0 | 0 | 0 |
| 0 | 240 | 0 | 0 |
| 0 | 0 | 240 | 0 |
| 0 | 0 | 0 | 240 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 4 | 205 |
| 0 | 0 | 208 | 237 |
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 32 | 5 |
| 0 | 0 | 36 | 209 |
| 66 | 31 | 0 | 0 |
| 117 | 128 | 0 | 0 |
| 0 | 0 | 0 | 240 |
| 0 | 0 | 1 | 240 |
| 56 | 188 | 0 | 0 |
| 141 | 185 | 0 | 0 |
| 0 | 0 | 31 | 36 |
| 0 | 0 | 67 | 210 |
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,240,0,0,0,0,240],[1,0,0,0,0,1,0,0,0,0,4,208,0,0,205,237],[1,0,0,0,0,1,0,0,0,0,32,36,0,0,5,209],[66,117,0,0,31,128,0,0,0,0,0,1,0,0,240,240],[56,141,0,0,188,185,0,0,0,0,31,67,0,0,36,210] >;
44 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | ··· | 30L |
| order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 |
| size | 1 | 1 | 1 | 1 | 8 | 6 | 6 | 60 | 60 | 2 | 2 | 8 | 8 | 8 | 30 | 30 | 30 | 30 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 8 | ··· | 8 |
44 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 6 | 6 |
| type | + | + | + | + | + | + | + | + | - | + | + | + | - | - | + | + |
| image | C1 | C2 | C2 | S3 | D5 | D6 | D10 | D15 | CSU2(𝔽3) | D30 | S4 | C2×S4 | CSU2(𝔽3) | Q8.D15 | C5⋊S4 | C2×C5⋊S4 |
| kernel | C2×Q8.D15 | Q8.D15 | C10×SL2(𝔽3) | Q8×C10 | C2×SL2(𝔽3) | C5×Q8 | SL2(𝔽3) | C2×Q8 | C10 | Q8 | C2×C10 | C10 | C10 | C2 | C22 | C2 |
| # reps | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 12 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2\times Q_8.D_{15} % in TeX
G:=Group("C2xQ8.D15"); // GroupNames label
G:=SmallGroup(480,1027);
// by ID
G=gap.SmallGroup(480,1027);
# by ID
G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,1680,170,1347,4204,3168,172,2525,1909,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^15=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=c,e*b*e^-1=b^-1*c,d*c*d^-1=b*c,e*c*e^-1=b^2*c,e*d*e^-1=d^-1>;
// generators/relations