Copied to
clipboard

?

G = C60.59(C2×C4)  order 480 = 25·3·5

13rd non-split extension by C60 of C2×C4 acting via C2×C4/C2=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C60).6C4, C60.59(C2×C4), (C4×D5).96D6, D5⋊(C4.Dic3), (C2×C12).12F5, C12.52(C2×F5), C60.C49C2, (D5×C12).13C4, C34(D5⋊M4(2)), (C3×D5)⋊4M4(2), C1512(C2×M4(2)), (C4×D5).5Dic3, C12.F511C2, (C2×C20).8Dic3, C15⋊C812C22, C6.34(C22×F5), C158M4(2)⋊7C2, C30.72(C22×C4), C20.13(C2×Dic3), D10.14(C2×Dic3), (C2×Dic5).208D6, (C22×D5).9Dic3, C10.3(C22×Dic3), Dic5.16(C2×Dic3), (D5×C12).124C22, Dic5.50(C22×S3), (C3×Dic5).64C23, (C6×Dic5).267C22, C4.20(C2×C3⋊F5), (C2×C4×D5).16S3, (D5×C2×C6).15C4, (C2×C4).8(C3⋊F5), C52(C2×C4.Dic3), C2.5(C22×C3⋊F5), C22.6(C2×C3⋊F5), (D5×C2×C12).19C2, (C2×C6).45(C2×F5), (C2×C30).39(C2×C4), (C6×D5).58(C2×C4), (C3×Dic5).66(C2×C4), (C2×C10).15(C2×Dic3), SmallGroup(480,1062)

Series: Derived Chief Lower central Upper central

C1C30 — C60.59(C2×C4)
C1C5C15C30C3×Dic5C15⋊C8C60.C4 — C60.59(C2×C4)
C15C30 — C60.59(C2×C4)

Subgroups: 524 in 136 conjugacy classes, 61 normal (47 characteristic)
C1, C2, C2 [×4], C3, C4 [×2], C4 [×2], C22, C22 [×4], C5, C6, C6 [×4], C8 [×4], C2×C4, C2×C4 [×5], C23, D5 [×2], D5, C10, C10, C12 [×2], C12 [×2], C2×C6, C2×C6 [×4], C15, C2×C8 [×2], M4(2) [×4], C22×C4, Dic5 [×2], C20 [×2], D10 [×2], D10 [×2], C2×C10, C3⋊C8 [×4], C2×C12, C2×C12 [×5], C22×C6, C3×D5 [×2], C3×D5, C30, C30, C2×M4(2), C5⋊C8 [×4], C4×D5 [×4], C2×Dic5, C2×C20, C22×D5, C2×C3⋊C8 [×2], C4.Dic3 [×4], C22×C12, C3×Dic5 [×2], C60 [×2], C6×D5 [×2], C6×D5 [×2], C2×C30, D5⋊C8 [×2], C4.F5 [×2], C22.F5 [×2], C2×C4×D5, C2×C4.Dic3, C15⋊C8 [×4], D5×C12 [×4], C6×Dic5, C2×C60, D5×C2×C6, D5⋊M4(2), C60.C4 [×2], C12.F5 [×2], C158M4(2) [×2], D5×C2×C12, C60.59(C2×C4)

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], C23, Dic3 [×4], D6 [×3], M4(2) [×2], C22×C4, F5, C2×Dic3 [×6], C22×S3, C2×M4(2), C2×F5 [×3], C4.Dic3 [×2], C22×Dic3, C3⋊F5, C22×F5, C2×C4.Dic3, C2×C3⋊F5 [×3], D5⋊M4(2), C22×C3⋊F5, C60.59(C2×C4)

Generators and relations
 G = < a,b,c | a60=b2=1, c4=a30, ab=ba, cac-1=a17, cbc-1=a30b >

Smallest permutation representation
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)
(1 61 46 106 31 91 16 76)(2 114 35 63 32 84 5 93)(3 107 24 80 33 77 54 110)(4 100 13 97 34 70 43 67)(6 86 51 71 36 116 21 101)(7 79 40 88 37 109 10 118)(8 72 29 105 38 102 59 75)(9 65 18 62 39 95 48 92)(11 111 56 96 41 81 26 66)(12 104 45 113 42 74 15 83)(14 90 23 87 44 120 53 117)(17 69 50 78 47 99 20 108)(19 115 28 112 49 85 58 82)(22 94 55 103 52 64 25 73)(27 119 60 68 57 89 30 98)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,61,46,106,31,91,16,76)(2,114,35,63,32,84,5,93)(3,107,24,80,33,77,54,110)(4,100,13,97,34,70,43,67)(6,86,51,71,36,116,21,101)(7,79,40,88,37,109,10,118)(8,72,29,105,38,102,59,75)(9,65,18,62,39,95,48,92)(11,111,56,96,41,81,26,66)(12,104,45,113,42,74,15,83)(14,90,23,87,44,120,53,117)(17,69,50,78,47,99,20,108)(19,115,28,112,49,85,58,82)(22,94,55,103,52,64,25,73)(27,119,60,68,57,89,30,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60), (1,61,46,106,31,91,16,76)(2,114,35,63,32,84,5,93)(3,107,24,80,33,77,54,110)(4,100,13,97,34,70,43,67)(6,86,51,71,36,116,21,101)(7,79,40,88,37,109,10,118)(8,72,29,105,38,102,59,75)(9,65,18,62,39,95,48,92)(11,111,56,96,41,81,26,66)(12,104,45,113,42,74,15,83)(14,90,23,87,44,120,53,117)(17,69,50,78,47,99,20,108)(19,115,28,112,49,85,58,82)(22,94,55,103,52,64,25,73)(27,119,60,68,57,89,30,98) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60)], [(1,61,46,106,31,91,16,76),(2,114,35,63,32,84,5,93),(3,107,24,80,33,77,54,110),(4,100,13,97,34,70,43,67),(6,86,51,71,36,116,21,101),(7,79,40,88,37,109,10,118),(8,72,29,105,38,102,59,75),(9,65,18,62,39,95,48,92),(11,111,56,96,41,81,26,66),(12,104,45,113,42,74,15,83),(14,90,23,87,44,120,53,117),(17,69,50,78,47,99,20,108),(19,115,28,112,49,85,58,82),(22,94,55,103,52,64,25,73),(27,119,60,68,57,89,30,98)])

Matrix representation G ⊆ GL6(𝔽241)

112360000
2152310000
0011011000
0013117700
0000131177
0000640
,
100000
010000
00240000
00024000
000010
000001
,
921890000
2231490000
000010
000001
0013117700
0011011000

G:=sub<GL(6,GF(241))| [11,215,0,0,0,0,236,231,0,0,0,0,0,0,110,131,0,0,0,0,110,177,0,0,0,0,0,0,131,64,0,0,0,0,177,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[92,223,0,0,0,0,189,149,0,0,0,0,0,0,0,0,131,110,0,0,0,0,177,110,0,0,1,0,0,0,0,0,0,1,0,0] >;

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F 5 6A6B6C6D6E6F6G8A···8H10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order1222223444444566666668···8101010121212121212121215152020202030···3060···60
size11255102112551042221010101030···304442222101010104444444···44···4

60 irreducible representations

dim111111112222222244444444
type++++++-++--+++
imageC1C2C2C2C2C4C4C4S3Dic3D6D6Dic3Dic3M4(2)C4.Dic3F5C2×F5C2×F5C3⋊F5C2×C3⋊F5C2×C3⋊F5D5⋊M4(2)C60.59(C2×C4)
kernelC60.59(C2×C4)C60.C4C12.F5C158M4(2)D5×C2×C12D5×C12C2×C60D5×C2×C6C2×C4×D5C4×D5C4×D5C2×Dic5C2×C20C22×D5C3×D5D5C2×C12C12C2×C6C2×C4C4C22C3C1
# reps122214221221114812124248

In GAP, Magma, Sage, TeX

C_{60}._{59}(C_2\times C_4)
% in TeX

G:=Group("C60.59(C2xC4)");
// GroupNames label

G:=SmallGroup(480,1062);
// by ID

G=gap.SmallGroup(480,1062);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,120,422,80,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c|a^60=b^2=1,c^4=a^30,a*b=b*a,c*a*c^-1=a^17,c*b*c^-1=a^30*b>;
// generators/relations

׿
×
𝔽